目前科学家找到的最大质数是多少?
1个回答
展开全部
最大素数,是指美国佛罗里达州奥卡拉市的Patrick Laroche通过GIMPS项目发现了第51个梅森素数:2^82,589,933-1(被称为M82589933),共有24,862,048位。
素数也叫质数,是只能被自己和1整除的数。按照规定,1不算素数,最小的素数是2,其后依次是3、5、7、11等等。 早在2500年前,希腊数学家欧几里德就证明了素数是无限的,并提出少量素数可写成“2的n次方减1(2^n-1)”的形式,这里n也是一个素数。但是人类已知的素数很有限,因为数字越大,要发现新的素数就越困难。不过,很多数学家曾对素数问题进行过研究,17世纪的法国教士马丁·梅森就是其中成果较为卓著的一位,因此后人将“2的n次方减1(2^n-1)”形式的素数称为梅森素数。随后,以梅森素数的形式,最大素数的记录被不断刷新。
1995 年,美国程序设计师乔治·沃特曼整理有关梅森素数的资料,编制了一个梅森素数计算程序,并将其放置在因特网上供数学爱好者使用,这就是分布式计算因特网梅森素数大搜索(GIMPS)项目。有6万多名志愿者、超过20万台计算机参与这项计划。该计划采取分布式计算方式,利用大量普通计算机的闲置时间,获得相当于超级计算机的运算能力,第 37、38 和 39 个梅森素数都是用这种方法找到的。美国一家基金会还专门设立了 10 万美元的奖金,鼓励第一个找到超过千万位素数的人。
素数也叫质数,是只能被自己和1整除的数。按照规定,1不算素数,最小的素数是2,其后依次是3、5、7、11等等。 早在2500年前,希腊数学家欧几里德就证明了素数是无限的,并提出少量素数可写成“2的n次方减1(2^n-1)”的形式,这里n也是一个素数。但是人类已知的素数很有限,因为数字越大,要发现新的素数就越困难。不过,很多数学家曾对素数问题进行过研究,17世纪的法国教士马丁·梅森就是其中成果较为卓著的一位,因此后人将“2的n次方减1(2^n-1)”形式的素数称为梅森素数。随后,以梅森素数的形式,最大素数的记录被不断刷新。
1995 年,美国程序设计师乔治·沃特曼整理有关梅森素数的资料,编制了一个梅森素数计算程序,并将其放置在因特网上供数学爱好者使用,这就是分布式计算因特网梅森素数大搜索(GIMPS)项目。有6万多名志愿者、超过20万台计算机参与这项计划。该计划采取分布式计算方式,利用大量普通计算机的闲置时间,获得相当于超级计算机的运算能力,第 37、38 和 39 个梅森素数都是用这种方法找到的。美国一家基金会还专门设立了 10 万美元的奖金,鼓励第一个找到超过千万位素数的人。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询