利用高斯公式求第二型曲面积分

利用高斯公式求解第二型曲面积分被积分的式子是x^3dydz+y^3dxdz+z^3dxdy,积分面为球面x^2+y^2+z^2=a^2的外侧;我是这样算的利用高斯公式原式... 利用高斯公式求解第二型曲面积分
被积分的式子是 x^3dydz + y^3 dxdz + z^3 dxdy , 积分面为球面x^2+y^2+z^2=a^2 的外侧;
我是这样算的 利用高斯公式 原式化为 3(x^2+y^2+z^2) dV =3a^2 dV =(12pai a^3)/3=4pai a^3;
但是答案是(12pai a^3)/5; 求解哪里错了,多谢
展开
匿名用户
2014-04-18
展开全部
转化后x,y,z是x^2+y^2+z^2=a^2
内部的点,满足的是x^2+y^2+z^2<a^2,不能把x^2+y^2+z^2=a^2
带进去,这时候该用求坐标换元,积分变为3∫sinθdθ∫dφ∫r^4dr,
0≤θ≤π,0≤φ≤2π,0≤r≤|a|,解得12π*(a^5/5)我感觉这边是5次方吧
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式