用几何法求二面角的步骤
1个回答
展开全部
向量法:利用两个平面的法向量M,N的夹角来求,这是高考中最有效的办法不管有多难都可求出二面角的大小,也是最好的办法。不过求出后要根据二面角的实际大小来判断算出的结果与实际情况下的角是否相同利用空间向量求二面角的平面角步骤(设二面角平面角为θ)
1)建立空间直角坐标系;
2)设平面
的法向量为N(X1,Y1,Z1),平面
法向量为M(X2,Y2,Z2);
3)在
内找两条线L1,L2,让N×L1=0,N×L2=0求出N的坐标,M也是如此求出;
4)然后利用cosθ=N?M/|N|×|M|即可求出θ的值
说明:锐二面角时,法向量的夹角即该二面角的平面角钝二面角时,法向量的夹角的补角为二面角的平面角
1)建立空间直角坐标系;
2)设平面
的法向量为N(X1,Y1,Z1),平面
法向量为M(X2,Y2,Z2);
3)在
内找两条线L1,L2,让N×L1=0,N×L2=0求出N的坐标,M也是如此求出;
4)然后利用cosθ=N?M/|N|×|M|即可求出θ的值
说明:锐二面角时,法向量的夹角即该二面角的平面角钝二面角时,法向量的夹角的补角为二面角的平面角
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询