用排序不等式证明(高三)设a,b,c,d,为正数,证明(a/b+c)+(b/c+...
用排序不等式证明(高三)设a,b,c,d,为正数,证明(a/b+c)+(b/c+d)+(c/d+a)+(d/a+b)>等于2...
用排序不等式证明(高三) 设a,b,c,d,为正数,证明 (a/b+c)+(b/c+d)+(c/d+a)+(d/a+b)>等于2
展开
展开全部
设a>=b>=c>=d,则a+b>=b+c
1/a+b=a/(b+a)+d/(b+c)
同理得:
b/(d+c)+c/(d+a)>=b/(d+a)+c/(d+c)
相加得:
a/(b+c)+b/(d+c)+c/(d+a)+d/(b+a)>=a/(b+a)+d/(b+c)+b/(d+a)+c/(d+c)>=2
故a/(b+c)+b/(d+c)+c/(d+a)+d/(b+a)>=2
晴L:难怪没人答你~还看出来你题目问的有问题?
应该这样~[a/(b+c)]+[b/(c+d)]+[c/(d+a)]+[d/(a+b)]>等于2
1/a+b=a/(b+a)+d/(b+c)
同理得:
b/(d+c)+c/(d+a)>=b/(d+a)+c/(d+c)
相加得:
a/(b+c)+b/(d+c)+c/(d+a)+d/(b+a)>=a/(b+a)+d/(b+c)+b/(d+a)+c/(d+c)>=2
故a/(b+c)+b/(d+c)+c/(d+a)+d/(b+a)>=2
晴L:难怪没人答你~还看出来你题目问的有问题?
应该这样~[a/(b+c)]+[b/(c+d)]+[c/(d+a)]+[d/(a+b)]>等于2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询