A为n阶可逆对称矩阵,B为n阶对称矩阵,当I+AB可逆时,证明:(I+AB)的逆乘A为对称矩阵
2个回答
展开全部
提示: 只需证明 [ (I+AB)^{-1}A ]^{-1} 对称
追问
求详细过程,谢谢
追答
如果提示看懂了应该就会做了
如果提示看不懂就好好问
直接伸手要详细过程的话——没有
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设S=(I+AB)^(-1)*A,则S^(-1)=A^(-1)*(I+AB)=A^(-1)+B,因此(S^(-1))^T=(A^(-1)+B)^T=(A^(-1))^T+B^T=A^(-1)+B=S^(-1),即S^(-1)为可逆矩阵。
又S^(-1)*S=I,所以(S^(-1)*S)^T=I^T=I,即I=S^T*(S^(-1))^T=S^T*S^(-1),两边右乘S得:S=S^T,即S为对称矩阵,证明完毕。
又S^(-1)*S=I,所以(S^(-1)*S)^T=I^T=I,即I=S^T*(S^(-1))^T=S^T*S^(-1),两边右乘S得:S=S^T,即S为对称矩阵,证明完毕。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询