设a,b是两个实数,且a≠b,①a5+b5>a3b2+a2b3,②a2+b2≥2(a-b-1),③ab+ba>2.上述三个式子恒成立
设a,b是两个实数,且a≠b,①a5+b5>a3b2+a2b3,②a2+b2≥2(a-b-1),③ab+ba>2.上述三个式子恒成立的有()A.0个B.1个C.2个D.3...
设a,b是两个实数,且a≠b,①a5+b5>a3b2+a2b3,②a2+b2≥2(a-b-1),③ab+ba>2.上述三个式子恒成立的有( )A.0个B.1个C.2个D.3个
展开
1个回答
展开全部
①a5+b5-a3b2-a2b3=a3(a2-b2)+b3(b2-a2)
=(a2-b2)(a3-b3)=(a+b)(a-b)2(a2+ab+b2).
∵(a-b)2≥0,a2+ab+b2≥0,但a+b符号不确定,
∴a5+b5>a3b2+a2b3不正确;
故从条件来看,①不一定成立;
②a2+b2-2a+2b+2=(a-1)2+(b+1)2≥0,
∴a2+b2≥2(a-b-1);成立;
③因为a,b不一定是同号,
+
>2不正确.
正确的为:②.
故选B.
=(a2-b2)(a3-b3)=(a+b)(a-b)2(a2+ab+b2).
∵(a-b)2≥0,a2+ab+b2≥0,但a+b符号不确定,
∴a5+b5>a3b2+a2b3不正确;
故从条件来看,①不一定成立;
②a2+b2-2a+2b+2=(a-1)2+(b+1)2≥0,
∴a2+b2≥2(a-b-1);成立;
③因为a,b不一定是同号,
a |
b |
b |
a |
正确的为:②.
故选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询