已知函数f(x)=xlnx.(Ⅰ)求函数f(x)的极值点;(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相

已知函数f(x)=xlnx.(Ⅰ)求函数f(x)的极值点;(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;(Ⅲ)设函数g(x)=f(x)-a(... 已知函数f(x)=xlnx.(Ⅰ)求函数f(x)的极值点;(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;(Ⅲ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数) 展开
 我来答
尼古丁2436
推荐于2016-12-01 · TA获得超过100个赞
知道答主
回答量:141
采纳率:75%
帮助的人:68.6万
展开全部
(Ⅰ)f'(x)=lnx+1,x>0,…(2分)
由f'(x)=0得x=
1
e
,…(3分)
所以,f(x)在区间(0,
1
e
)
上单调递减,在区间(
1
e
,+∞)
上单调递增.…(4分)
所以,x=
1
e
是函数f(x)的极小值点,极大值点不存在.…(5分)
(Ⅱ)设切点坐标为(x0,y0),则y0=x0lnx0,…(6分)
切线的斜率为lnx0+1,
所以,lnx0+1=
y0+1
x0
,…(7分)
解得x0=1,y0=0,…(8分)
所以直线l的方程为x-y-1=0.…(9分)
(Ⅲ)g(x)=xlnx-a(x-1),
则g'(x)=lnx+1-a,…(10分)
解g'(x)=0,得x=ea-1
所以,在区间(0,ea-1)上,g(x)为递减函数,
在区间(ea-1,+∞)上,g(x)为递增函数.…(11分)
当ea-1≤1,即a≤1时,在区间[1,e]上,g(x)为递增函数,
所以g(x)最小值为g(1)=0.…(12分)
当1<ea-1<e,即1<a<2时,g(x)的最小值为g(ea-1)=a-ea-1.…(13分)
当ea-1≥e,即a≥2时,在区间[1,e]上,g(x)为递减函数,
所以g(x)最小值为g(e)=a+e-ae.…(14分)
综上,当a≤1时,g(x)最小值为0;当1<a<2时,g(x)的最小值a-ea-1;当a≥2时,g(x)的最小值为a+e-ae.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式