已知函数f(x)=ax²+bx+c满足f(1)=0,b=2c,求函数f(x)的单调增区间

若函数f(x)的图像在y轴上的截距为正数,比较f(0),f(1\2),f(根号2\2)的大小... 若函数f(x)的图像在y轴上的截距为正数,比较f(0),f(1\2),f(根号2\2)的大小 展开
新市怪咖
推荐于2016-07-11
知道答主
回答量:10
采纳率:0%
帮助的人:7.6万
展开全部
由f(1)=0得 a+b+c=0 又因为B=2C 所以a+3c=0 所以a=--3c
函数f(x)的图像在y轴上的截距就是f(0)也就是C 所以f(0)=C
f(1\2)=1/4a+1/2b+c 由a=--3c b=2c 得f(1\2)=7/4C
同理 f(根号2\2)=(根号2+1-3/2)C 括号里的数大于0小于1
且C>0
所以 f(1\2)大于f(0)大于f(根号2\2)\
求f(x)的导数为2ax+b 因为求单调增区间 所以令2ax+b>0
用c代替 为-6c+2c>0
即c<1/3
用对称轴和图形也可以 对称轴为-b/2a
a小于0 左侧为增
追问
f(x)的单调增区间是什么?
追答
额 是-6cx+2c大于0
即x小于1/3
其他的在上面补充了 负无穷到 三分之1
小震小呆
2014-09-23
知道答主
回答量:8
采纳率:0%
帮助的人:5.3万
展开全部
a+b+c=0 b=2c
a+3c=0 a=-3c
f(0)=c
f(1/2)=1/4(-3c)+c+c
f(根号2/2)=1/2(-3C)+根号2c+c
因为递增f(0)大于f(1/2)大于f(根号2/2)
追问
f(x)的单调增区间是什么?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ren2314xxt
2014-09-23 · TA获得超过678个赞
知道小有建树答主
回答量:880
采纳率:0%
帮助的人:611万
展开全部
(1)∵f(1)=a+b+c=0
b=2c
∴a=-b-c=-3c
则f(x)=-3cx^2 +2cx+c
对称轴 x=-2c/[2*(-3c)]=1/3
① c>0时 f(x)图像开口向下
f(x)单调递增区间 为 x≤1/3 即(-∞,1/3]
②c<0时,f(x)开口向上
f(x)单调递增区间为 x≥1/3 即[1/3,+∞)
(2)
f(0)=c即为f(x)在y轴上的截距 则c>0
f(0)=c f(1/2)=-3c*1/4+2c*1/2+c=5/4*c=1.25c
∴f(0)<f(1/2)
f(√2/2)=-3c*(√2/2)^2 +2c*(√2/2)+c=(2√2 -1)/2 *c≈0.914d
∴f(√2/2)<f(0)<f(1/2)

注:第2问要用单调性解得话稍微麻烦
c>0时 f(x)在[1/3,+∞)单调递减
√2/2>1/2>1/3
则f(√2/2)<f(1/2)
下面开始麻烦了! 怎样比较f(0)与f(√2/2)的大小
f(x)开口向下, 离对称轴x=1/3越远的x 对应的y值越小
1/3-0=1/3 ≈0.33333
√2/2 -1/3=0.707-0.333≈0.374
∴f(√2/2)<f(0)
同样f(1/2)>f(0) 推荐我的第一种方法。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式