已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE.(1)如图
已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE.(1)如图1,连接线段BE、CD.求证:BE=CD;(...
已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE.(1)如图1,连接线段BE、CD.求证:BE=CD;(2)如图2,连接DE交AB于点F.求证:F为DE中点.
展开
1个回答
展开全部
证明:(1)∵△ABD和△ACE是等边三角形, ∴AB=AD,AC=AE,∠DAB=∠EAC=60°, ∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE, 在△DAC和△BAE中,
∴△DAC≌△BAE(SAS), ∴DC=BE; (2)如图,作DG ∥ AE,交AB于点G, 由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°, ∴∠DGF=∠FAE=90°, 又∵∠ACB=90°,∠CAB=30°, ∴∠ABC=60°, 又∵△ABD为等边三角形,∠DBG=60°,DB=AB, ∴∠DBG=∠ABC=60°, 在△DGB和△ACB中,
∴△DGB≌△ACB(AAS), ∴DG=AC, 又∵△AEC为等边三角形,∴AE=AC, ∴DG=AE, 在△DGF和△EAF中,
∴△DGF≌△EAF(AAS), ∴DF=EF,即F为DE中点. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询