设f(x)在[1,2]上连续,在(1,2)内可导,且f(2)=0,证明:至少存在一点ξ∈(1,2),使得ξf′(

设f(x)在[1,2]上连续,在(1,2)内可导,且f(2)=0,证明:至少存在一点ξ∈(1,2),使得ξf′(ξ)lnξ+f(ξ)=0.... 设f(x)在[1,2]上连续,在(1,2)内可导,且f(2)=0,证明:至少存在一点ξ∈(1,2),使得ξf′(ξ)lnξ+f(ξ)=0. 展开
 我来答
kk眛髷
推荐于2017-11-27 · 超过81用户采纳过TA的回答
知道答主
回答量:124
采纳率:100%
帮助的人:146万
展开全部
令F(x)=f(x)lnx.
因为f(x)、lnx在[1,2]上连续,在(1,2)内可导,
故F(x)在[1,2]上连续,在(1,2)内可导.
对F(x)利用拉格朗日中值定理可得,
至少存在一点ξ∈(1,2),使得:F(2)-F(1)=F′(ξ)(2-1)=F′(ξ).(*)
又因为F′(x)=f′(x)lnx+f(x)?
1
x
,f(2)=0,
所以F′(ξ)=f′(ξ)lnξ+f(ξ)?
1
ξ
,F(2)=F(1)=0,
从而,由(*)式可得:f′(ξ)lnξ+f(ξ)?
1
ξ
=0

即:ξf′(ξ)lnξ+f(ξ)=0
所以,至少存在一点ξ∈(1,2),使得 ξf'(ξ)lnξ+f(ξ)=0.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式