定义在R上的函数y=f(x)是奇函数,且满足f(1+x)=f(1-x),当x∈[...

定义在R上的函数y=f(x)是奇函数,且满足f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2011)的值是()A.-1B.0C.1D.2... 定义在R上的函数y=f(x)是奇函数,且满足f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2011)的值是( ) A.-1 B.0 C.1 D.2 展开
 我来答
庾胤尹德元
2019-10-08 · TA获得超过3511个赞
知道大有可为答主
回答量:3124
采纳率:29%
帮助的人:179万
展开全部
由已知中定义在R上的函数y=f(x)是奇函数,且满足f(1+x)=f(1-x),我们可以求出函数的对称轴和对称中心,根据函数对称性与周期性之间的关系,我们易求出函数的周期,进而结合当x∈[-1,1]时,f(x)=x3,即可f(2011)的值.
【解析】
∵f(1+x)=f(1-x),
故直线x=1是函数y=f(x)的一条对称轴
又由函数y=f(x)是定义在R上的奇函数,
故原点(0,0)是函数y=f(x)的一个对称中心
则T=4是函数y=f(x)的一个周期
又∵当x∈[-1,1]时,f(x)=x3,
故f(2011)=f(-1)=-1
故选A
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式