设函数fx,gx在ab上连续,证明:至少存在一点§∈ab,使得f§∫gxdx=g§∫fx
令F(x)=f(x)在a到x上的积分,G(x)=g(x)在a到x上的积分,由柯西介值定理一步即出。
令H(x)=F(x)G(b)-G(x)F(b),并注意到F(a)=G(a)=0,可证明H(a)=H(b)=0,利用拉格朗日中值并整理即可。
如果设F(x) = ∫<0,x> f(t)dt, 则所证式可变为(1-ξ)F'(ξ) = F(ξ), 是一道比较常见的微分中值定理的题目,证明如下.
设g(x) = (x-1)*∫<0,x> f(t)dt, 则g(x)在[0,1]连续, 在(0,1)可导, 并有g(0) = g(1) = 0.
由罗尔中值定理, 存在ξ∈(0,1), 使g'(ξ) = 0.
即有(ξ-1)f(ξ)+∫<0,ξ> f(t)dt = 0, 于是(1-ξ)f(ξ) = ∫<0,ξ> f(t)dt得证。
扩展资料:
对于曲线运动在任意一个运动过程中至少存在一个位置(或一个时刻)的瞬时速率等于这个过程中的平均速率。
拉格朗日中值定理在柯西的微积分理论系统中占有重要的地位。可利用拉格朗日中值定理对洛必达法则进行严格的证明,并研究泰勒公式的余项。从柯西起,微分中值定理就成为研究函数的重要工具和微分学的重要组成部分。
参考资料来源:百度百科-拉格朗日中值定理