数学问题: f^-1(x) 与f(x)的关系是什么? 急急急急急急急急急急急急急急~~~~~ 有加分的~~~·在线等
3个回答
展开全部
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为y= f^-1(x)。存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。
反函数性质
(1)互为反函数的两个函数的图象关于直线y=x对称;
(2)函数存在反函数的必要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致;
(4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a,x∈{0})。奇函数不一定存在反函数。被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(5)一切隐函数具有反函数;
(6)一段连续的函数的单调性在对应区间内具有一致性;
(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。
(8)反函数是相互的
(9)定义域、值域相反对应法则互逆(三反)
(10)原函数一旦确定,反函数即确定(三定)
例:y=2x-1的反函数是y=0.5x+0.5
y=2^x的反函数是y=log2 x
例题:求函数3x-2的反函数
解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(X)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F’(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]'=1\F’(Y)。
反函数性质
(1)互为反函数的两个函数的图象关于直线y=x对称;
(2)函数存在反函数的必要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致;
(4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a,x∈{0})。奇函数不一定存在反函数。被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(5)一切隐函数具有反函数;
(6)一段连续的函数的单调性在对应区间内具有一致性;
(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。
(8)反函数是相互的
(9)定义域、值域相反对应法则互逆(三反)
(10)原函数一旦确定,反函数即确定(三定)
例:y=2x-1的反函数是y=0.5x+0.5
y=2^x的反函数是y=log2 x
例题:求函数3x-2的反函数
解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(X)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F’(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]'=1\F’(Y)。
展开全部
a^2-a+1=(a-1/2)^2+3/4≥3/4,
因为在(0+∞)上是减函数,所以f(a^2-a+1)≤f(3/4)
又因为是偶函数,所以f(-3/4)=f(3/4)
所以f(a^2-a+1)≤f(-3/4)
因为在(0+∞)上是减函数,所以f(a^2-a+1)≤f(3/4)
又因为是偶函数,所以f(-3/4)=f(3/4)
所以f(a^2-a+1)≤f(-3/4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
互为反函数吧。图像关于直线y=x对称。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询