如图,在△ABC中,∠BAC=90°,且AB=AC,∠ABC=∠ACB=45°,点D是AC的中点,AE⊥BD于点F,交BC于点E,连
如图,在△ABC中,∠BAC=90°,且AB=AC,∠ABC=∠ACB=45°,点D是AC的中点,AE⊥BD于点F,交BC于点E,连接DE.求证:(1)∠BAF=∠ADB...
如图,在△ABC中,∠BAC=90°,且AB=AC,∠ABC=∠ACB=45°,点D是AC的中点,AE⊥BD于点F,交BC于点E,连接DE.求证:(1)∠BAF=∠ADB;(2)∠ADB=∠EDC.
展开
1个回答
展开全部
(1)证明:∵∠BAC=90°,
∴∠BAF+∠DAF=90°,
∵AE⊥BD,
∴∠AFD=90°,
∴∠DAF+∠ADB=90°,
∴∠BAF=∠ADB.
(2)证明:过C作CM⊥AC,交AE的延长线于M,
则∠ACM=90°=∠BAC,
∴CM∥AB,
∴∠MCE=∠ABC=∠ACB,
∵∠BAF=∠ADB,∠ADB+∠FAD=90°,∠ABD+∠BAF=90°,
∴∠ABD=∠CAM,
在△ABD和△CAM中
∵
,
∴△ABD≌△CAM(ASA),
∴∠ADB=∠M,AD=CM,
∵D为AC中点,
∴AD=DC=CM,
在△CDE和△CME中,
∵
,
∴△CDE≌△CME(SAS),
∴∠M=∠EDC,
∵∠M=∠ADB,
∴∠ADB=∠EDC.
∴∠BAF+∠DAF=90°,
∵AE⊥BD,
∴∠AFD=90°,
∴∠DAF+∠ADB=90°,
∴∠BAF=∠ADB.
(2)证明:过C作CM⊥AC,交AE的延长线于M,
则∠ACM=90°=∠BAC,
∴CM∥AB,
∴∠MCE=∠ABC=∠ACB,
∵∠BAF=∠ADB,∠ADB+∠FAD=90°,∠ABD+∠BAF=90°,
∴∠ABD=∠CAM,
在△ABD和△CAM中
∵
|
∴△ABD≌△CAM(ASA),
∴∠ADB=∠M,AD=CM,
∵D为AC中点,
∴AD=DC=CM,
在△CDE和△CME中,
∵
|
∴△CDE≌△CME(SAS),
∴∠M=∠EDC,
∵∠M=∠ADB,
∴∠ADB=∠EDC.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询