ab是圆o的直径,点d在ab的延长线上,c,e是圆o上的两点,ce=cb
如图,AB是圆O的直径,CB,CD分别切圆O于B,D两点,点E在CD的延长线上,且CE=AE+BC;(1)求证:AE是圆O的切线;(2)过点D作DF⊥AB于点F,连接BE...
如图,AB是圆O的直径,CB,CD分别切圆O于B,D两点,点E在CD的延长线上,且CE=AE+BC;
(1)求证:AE是圆O的切线;
(2)过点D作DF⊥AB于点F,连接BE交DF于点M,求证:DM=MF. 展开
(1)求证:AE是圆O的切线;
(2)过点D作DF⊥AB于点F,连接BE交DF于点M,求证:DM=MF. 展开
2个回答
展开全部
证明:连接OE、OD,
∵CD切圆O于D,CB切圆O于B
∴OD⊥EC,BC⊥AB,DC=BC,
∵CE=ED+DC,CE=AE+BC
∴ED=AE
∵OD=OA,OE=OE
∴△EAO≌△EDO
∴∠EAO=∠EDO=90
∴EA⊥AB
∵DF⊥AB
∴EA∥DF∥CB
∴DM/BC=ED/EC=AE/EC,MF/AE=MB/EB=DC/EC=BC/EC
∴DM=AE•BC/EC,MF=AE•BC/EC,
∴DM=MF
数学辅导团解答了你的提问,
∵CD切圆O于D,CB切圆O于B
∴OD⊥EC,BC⊥AB,DC=BC,
∵CE=ED+DC,CE=AE+BC
∴ED=AE
∵OD=OA,OE=OE
∴△EAO≌△EDO
∴∠EAO=∠EDO=90
∴EA⊥AB
∵DF⊥AB
∴EA∥DF∥CB
∴DM/BC=ED/EC=AE/EC,MF/AE=MB/EB=DC/EC=BC/EC
∴DM=AE•BC/EC,MF=AE•BC/EC,
∴DM=MF
数学辅导团解答了你的提问,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询