已知数列{an}中
已知数列{an}中,a1=-1,且当n≥2时,前n项和Sn与第n项an有如下关系:2(Sn)^2=2anSn-an,求该数列的通项公式an....
已知数列{an}中,a1=-1,且当n≥2时,前n项和Sn与第n项an有如下关系:2(Sn)^2=2anSn-an,求该数列的通项公式an.
展开
1个回答
展开全部
因为S(n+1)-S(n)=a(n+1),.....1
根据题意有:
2S(n+1)^2=2a(n+1)S(n+1)-a(n+1),......2
将1式代入2式得:
2S(n+1)^2=2[S(n+1)-Sn]S(n+1)-S(n+1)+Sn,
Sn-S(n+1)=2SnS(n+1),两边同时除以SnS(n+1)得:
1/S(n+1)-1/Sn=2,
所以数列{1/Sn}可以是以1/S1=1/a1=1/2为首项,以2为公差的等差数列,
1/sn=1/a1+(n-1) d
=-1+(n-1)*2
=2n-3
所以An=Sn-S(n-1)
=1/(2n-3)-1/[2(n-1)-3]
=1/(2n-3)-1/(2n-5)
=(2n-5-2n+3)/(2n-3)(2n-5)
=-2/(2n-3)(2n-5)
根据题意有:
2S(n+1)^2=2a(n+1)S(n+1)-a(n+1),......2
将1式代入2式得:
2S(n+1)^2=2[S(n+1)-Sn]S(n+1)-S(n+1)+Sn,
Sn-S(n+1)=2SnS(n+1),两边同时除以SnS(n+1)得:
1/S(n+1)-1/Sn=2,
所以数列{1/Sn}可以是以1/S1=1/a1=1/2为首项,以2为公差的等差数列,
1/sn=1/a1+(n-1) d
=-1+(n-1)*2
=2n-3
所以An=Sn-S(n-1)
=1/(2n-3)-1/[2(n-1)-3]
=1/(2n-3)-1/(2n-5)
=(2n-5-2n+3)/(2n-3)(2n-5)
=-2/(2n-3)(2n-5)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询