∫π/2到0 根号下(1-sin2x)dx
2个回答
展开全部
∫π/2到0 √(1-sin2x)dx
=∫π/2到0√(sin^2x-2sinxcosx+cos^2x)dx
=∫π/2到0|sinx-cosx|dx
=∫π/2到π/4 (sinx-cosx)dx +∫π/4到0(cosx-sinx)dx
=(-cosx-sinx)|(π/2到π/4)+(sinx+cosx)|π/4到0
=(-√2/2-√2/2)-(-0-1)+(0+1)-(√2/2+√2/2)
=-√2+1+1-√2
=2-2√2
=∫π/2到0√(sin^2x-2sinxcosx+cos^2x)dx
=∫π/2到0|sinx-cosx|dx
=∫π/2到π/4 (sinx-cosx)dx +∫π/4到0(cosx-sinx)dx
=(-cosx-sinx)|(π/2到π/4)+(sinx+cosx)|π/4到0
=(-√2/2-√2/2)-(-0-1)+(0+1)-(√2/2+√2/2)
=-√2+1+1-√2
=2-2√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询