已知圆C:x2+y2=9,点A(-5,0),在直线AO上(O为坐标原点),是否存在定点B(不同于点

已知圆C:x2+y2=9,点A(-5,0),在直线AO上(O为坐标原点),是否存在定点B(不同于点A),满足:对于圆C上任一点P,都有PB/PA为一常数,若存在,求出所有... 已知圆C:x2+y2=9,点A(-5,0),在直线AO上(O为坐标原点),是否存在定点B(不同于点A),满足:对于圆C上任一点P,都有PB/PA为一常数,若存在,求出所有满足条件的点B的坐标,若不存在,说明理由 展开
 我来答
yajing955
2014-07-26 · TA获得超过3.7万个赞
知道小有建树答主
回答量:1.1万
采纳率:100%
帮助的人:442万
展开全部
分析:(1)先求与直线l垂直的直线的斜率,可得其方程,利用相切求出结果.
(2)先设存在,利用都有PB/PA 为一常数这一条件,以及P在圆上,列出关系,利用恒成立,可以求得结果.解答:解:(1)设所求直线方程为y=-2x+b,即2x+y-b=0,∵直线与圆相切,
∴l -b l / √(2^2+1^2)=3 ,得 b=±3√5,
∴所求直线方程为y=2x±3√5 ,
解:
假设存在这样的点B(t,0),
当P为圆C与x轴左交点(-3,0)时,PB/PA =l t+3 l /2 ;
当P为圆C与x轴右交点(3,0)时,PB/PA =l t-3 l /8 ,
依题意,l t+3 l /2=l t-3 l /8 ,解得,t=-5(舍去),或t=-9/5 .
下面证明点B(-9/5,0) 对于圆C上任一点P,都有PB/PA为一常数.
设P(x,y),则y^2=9-x^2,
∴ PB^2/PA^2=[(x+9/5)^2+y^2]/[(x+5)^2+y^2]=(x^2+18/5x+81/25+9-x^2)/(x^2+10x+25+9-^x2)=18/25(5x+17)/[2(5x+17)]=9/25,
从而PB/PA=3/5 为常数.
(好评哦亲~)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式