设M(-1,0) N(0,2)若点P是圆(x-6)^2+y^2=16上的点 .求三角形PMN的面积S的最大值.

 我来答
黑科技1718
2022-08-18 · TA获得超过5883个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.2万
展开全部
MN的长=√5
即底边是√5
直线MN是2x-y+2=0
圆心(6,0)到MN距离是|6-0+2|/√5=8/√5
半径是4
所以圆上的点到直线距离的最大值=8/√5+4
即高最大=8/√5+4
所以最大面积=√5(8/√5+4)÷2=4+2√5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式