系数矩阵的秩不等于增广矩阵的秩,则非线性方程组无解,如果有解,系数矩阵的秩与未知数个数相等则有唯一
2个回答
展开全部
书上有解释啊
你说的是非正改齐次线性方程组吧??岩迟?
第一句就是判断非齐次线性方程组的方法啊 对其增广矩阵进行初等变换 看看系数矩阵和增广矩阵的秩是否相等 相等就有解了粗清李
如果小于增广矩阵的秩则说明 等号右边至少有一个向量无法用解向量线性表出 所以没有解(纯粹个人理解 我学的也很差 也不知道是数还是向量)
系数矩阵的秩和未知数个数相等 则有唯一的一组解使每个方程都成立
这个我也不会解释
但是习惯上 二元一次方程组 能解出两个未知数
但是二元一次方程 就可以有无数组解
n个方程对应n个解
如果方程个数小于未知数个数就可能有多解
不好意思
我线代不一定能及格 水品很差 多多包涵
你说的是非正改齐次线性方程组吧??岩迟?
第一句就是判断非齐次线性方程组的方法啊 对其增广矩阵进行初等变换 看看系数矩阵和增广矩阵的秩是否相等 相等就有解了粗清李
如果小于增广矩阵的秩则说明 等号右边至少有一个向量无法用解向量线性表出 所以没有解(纯粹个人理解 我学的也很差 也不知道是数还是向量)
系数矩阵的秩和未知数个数相等 则有唯一的一组解使每个方程都成立
这个我也不会解释
但是习惯上 二元一次方程组 能解出两个未知数
但是二元一次方程 就可以有无数组解
n个方程对应n个解
如果方程个数小于未知数个数就可能有多解
不好意思
我线代不一定能及格 水品很差 多多包涵
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询