已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)-g(x)=(1/2)^x,则f(1),g(0),g(-1)之间的大小?
3个回答
展开全部
解:当x=1时:f(1)-g(1)=1/2 即:f(1)-g(-1)=1/2 (1式)
当x=-1时:f(-1)-g(-1)=2即:-f(1)-g(-1)=2(2式)
联立(1)(2)式:f(1)=-3/4 g(-1)=-5/4
当x=0时,由定义在r上奇函数性质知:f(0)=0,
所以:f(0)-g(-0)=0-g(0)=1 可知 g(0)=-1
所以:f(1)>g(0)>g(-1) 。
当x=-1时:f(-1)-g(-1)=2即:-f(1)-g(-1)=2(2式)
联立(1)(2)式:f(1)=-3/4 g(-1)=-5/4
当x=0时,由定义在r上奇函数性质知:f(0)=0,
所以:f(0)-g(-0)=0-g(0)=1 可知 g(0)=-1
所以:f(1)>g(0)>g(-1) 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由奇函数及偶函数性质知,f(0)=0.所以由 f(0)-g(0)=(1/2)^0 可得出 g(0)=-1;
再分别令x=1,-1,可得 f(1)-g(1)=1/2, f(-1)-g(-1)=2 即-f(1)-g(1)=2.
解方程组可得f(1)=-3/4 g(-1)=g(1)=-5/4
因此 g(-1)<g(0)<f(1)
再分别令x=1,-1,可得 f(1)-g(1)=1/2, f(-1)-g(-1)=2 即-f(1)-g(1)=2.
解方程组可得f(1)=-3/4 g(-1)=g(1)=-5/4
因此 g(-1)<g(0)<f(1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询