f(x h)-f(x-h)/2h为什么等于f'(x)而不等于f'(x-h)
2个回答
2017-02-13
展开全部
你看看导数的定义公式:
lim(△x→0)[f(x+△x)-f(x)]/△x
这个式子中,被减数f(x)括号中的x,不随△x变化而变化。也就是说相对△x而言,x是个固定的点。这样求出来的才是x点的导数。
然后看你的式子。lim(h→0)[f(x+h)-f(x-h)]/2h
这个式子中的被减数f(x-h)括号中的x-h,随着h变化而变化,是相对h而言的一个动点,而不是固定点。所以这不符合求导的公式原则。当然不是求x-h处的导数了。
所以必须化出一个f(x)这样不随h变化而变化的固定点的函数值来,才能化成导数的公式。
lim(△x→0)[f(x+△x)-f(x)]/△x
这个式子中,被减数f(x)括号中的x,不随△x变化而变化。也就是说相对△x而言,x是个固定的点。这样求出来的才是x点的导数。
然后看你的式子。lim(h→0)[f(x+h)-f(x-h)]/2h
这个式子中的被减数f(x-h)括号中的x-h,随着h变化而变化,是相对h而言的一个动点,而不是固定点。所以这不符合求导的公式原则。当然不是求x-h处的导数了。
所以必须化出一个f(x)这样不随h变化而变化的固定点的函数值来,才能化成导数的公式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询