函数零点问题,急!!
下列函数中,在(0,二分之派)上有零点的函数是A.f(x)=sinx-xB.f(x)=sinx-派分之二xC.f(x)=sinx的平方D.f(x)=sinx的平方-派分之...
下列函数中,在(0,二分之派)上有零点的函数是 A.f(x)=sinx-x B.f(x)=sinx-派分之二x C.f(x)=sinx的平方 D.f(x)=sinx的平方-派分之二x 要详细的解答步骤,谢谢了!!
详细步骤啊,还是搞不懂,谢了 展开
详细步骤啊,还是搞不懂,谢了 展开
6个回答
展开全部
分析各个选项的导函数,当其数值在区间上同时有>和<0
A.f'(x)=cosx-1 ,在(0,二分之派)上恒 <0
B.f'(x)=cosx- 派分之二, 有 <和>0
C.f'(x)=2xcosx^2恒 >0
D.f'(x)=2xcosx^2-派分之二恒 <0
A.f'(x)=cosx-1 ,在(0,二分之派)上恒 <0
B.f'(x)=cosx- 派分之二, 有 <和>0
C.f'(x)=2xcosx^2恒 >0
D.f'(x)=2xcosx^2-派分之二恒 <0
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
A.画图,y=sin(x)在x=0处切线为y=x,无交点。
B.画图,x=0或x=pi/2时,2x/pi=sin(x),亦无交点。
D.求导,f'(x)=sin(2x)-2/pi=0,画y=sin(2x)与y=2/pi的图,知原函数“减增减”,而f(0)=f(2/pi)=0,画图知有一零点。
B.画图,x=0或x=pi/2时,2x/pi=sin(x),亦无交点。
D.求导,f'(x)=sin(2x)-2/pi=0,画y=sin(2x)与y=2/pi的图,知原函数“减增减”,而f(0)=f(2/pi)=0,画图知有一零点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一个函数在某区间内连续且在端点函数值异号,则在这个区间内至少有一个零点。
本题答案没有一个正确。
本题答案没有一个正确。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
满足f(0)*f(π/2)<0就是在在(0,二分之派)上有零点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询