证明角平分线题

在三角形ABC中,(等腰AC=AB)已知∠A=36°,∠C=72°,直线l是线段AB的垂直平分线,证明BE是∠ABC的平分线。... 在三角形ABC中,(等腰 AC=AB)已知∠A=36°,∠C=72°,直线l是线段AB的垂直平分线,证明BE是∠ABC的平分线。 展开
E空洛
2011-06-16 · TA获得超过2341个赞
知道小有建树答主
回答量:189
采纳率:100%
帮助的人:129万
展开全部
解:因为∠A=36°,∠C=72°,所以∠B=180°-36°-72°=72°。
因为直线l是线段AB的垂直平分线,所以∠aed=180°-90°-36°=54°
因为直线l是线段AB的垂直平分线,所以∠deb=∠aed=54°,
所以∠ebd=180°-54°-90°=36°
因为∠deb=∠aed=54°,所以∠ceb=180°-54°×2=72°
所以∠cbe=180°-72°-72°=36°
因为∠ebd=∠cbe=36°,所以BE是∠ABC的平分线。
RAYMAN12345
2011-06-16 · TA获得超过903个赞
知道小有建树答主
回答量:692
采纳率:66%
帮助的人:424万
展开全部
因为l是中垂线,故角cab=角abe=36°
而ac=ab,故角c=角b=72度
则角cbe=角b-角abe=36°
故角abe=角cbe
则be是∠abc的平分线
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
我爱加贺
2011-06-16 · TA获得超过829个赞
知道小有建树答主
回答量:156
采纳率:0%
帮助的人:199万
展开全部
已知∠A=36°,因为AB=AC,所以∠C=∠ABC=72°①
因为l为线段AB的垂直平分线,所以∠EBD=∠A=36°②
(证明原理为边角边,即ED=ED,∠EDA=∠EDB=90°,DA=DB)
因为①②,所以∠CBE=∠ABC-∠EBD=72°-36°=36°
所以∠CBE=∠EBD,
所以BE是∠ABC的平分线。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式