已知O为坐标原点,向量OA=(sinα,1),向量OB=(cosα,9),OC=(-sinα,2),点P满足向量AB=向量BP
1.记函数f(α)=向量PB*向量CA,α∈(-π/8,π/2)讨论函数的单调性并求其值域2,若OPC三点共线,求|向量OA+向量OB|的值...
1.记函数f(α)=向量PB*向量CA,α∈(-π/8,π/2)讨论函数的单调性并求其值域
2,若OPC三点共线 ,求|向量OA+向量OB|的值 展开
2,若OPC三点共线 ,求|向量OA+向量OB|的值 展开
1个回答
展开全部
AB
=OB - OA
=( cosα-sinα,8)
f(α)
=PB.CA
= -AB.CA
= -( cosα-sinα,8) . ( -2sinα,1)
=2sinαcosα-2(sinα)^2 + 8
= sin2α +(1-2(sinα)^2) + 7
= sin2α + cos2α + 7
= √2(sin(2α+π/4) + 7
值域 = [7-√2,7+√2]
增加 (-π/8,π/8]
减小[π/8, π/2)
(2)
let P be (x,y)
OPC三点共线
-2/sinα = y/x
-2x = ysinα
x = -ysinα/2
AB= BP
(cosα-sinα, 8) = (-ysinα/2-cosα, y-9)
=> y-9 = 8 and cosα-sinα= -ysinα/2-cosα
= y = 17 and cosα-sinα= -17sinα/2-cosα
cosα-sinα= -17sinα/2-cosα
2cosα = -15sinα/2
cosα = -15sinα/2
tanα = -2/15
|OA+OB|^2
=|(sinα+cosα,10)|^2
= (sinα+cosα)^2 +100
= 2sinαcosα + 101
= -2(2/√229)(15/√229) +101
= 23069/229
|OA+OB| = √(23069/229)
=OB - OA
=( cosα-sinα,8)
f(α)
=PB.CA
= -AB.CA
= -( cosα-sinα,8) . ( -2sinα,1)
=2sinαcosα-2(sinα)^2 + 8
= sin2α +(1-2(sinα)^2) + 7
= sin2α + cos2α + 7
= √2(sin(2α+π/4) + 7
值域 = [7-√2,7+√2]
增加 (-π/8,π/8]
减小[π/8, π/2)
(2)
let P be (x,y)
OPC三点共线
-2/sinα = y/x
-2x = ysinα
x = -ysinα/2
AB= BP
(cosα-sinα, 8) = (-ysinα/2-cosα, y-9)
=> y-9 = 8 and cosα-sinα= -ysinα/2-cosα
= y = 17 and cosα-sinα= -17sinα/2-cosα
cosα-sinα= -17sinα/2-cosα
2cosα = -15sinα/2
cosα = -15sinα/2
tanα = -2/15
|OA+OB|^2
=|(sinα+cosα,10)|^2
= (sinα+cosα)^2 +100
= 2sinαcosα + 101
= -2(2/√229)(15/√229) +101
= 23069/229
|OA+OB| = √(23069/229)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询