如图,梯形ABCD中,AD//BC,∠ABC=90°,对角线AC⊥BD与P点,已知AD/BC=3/4,则BD:AC的值为?
1个回答
展开全部
解:AD//BC,∠ABC=90°,则:∠BAD=90°;且PD/PB=AD/BC=3/4.
设PD=3m,则PB=4m.
又BD⊥AC,则:⊿APB∽⊿DPA,得AP/DP=PB/AP,AP^2=DP*PB=12m^2.
AB=√(AP^2+PB^2)=√(12m^2+16m^2)=2√7m;
AD=√(AP^2+PD^2)=√(12m^2+9m^2)=√21m.
∵∠ABC=∠DAB=90°;
∠DAP=∠ABD(均为角BAP的余角).
∴⊿ABC∽⊿DAB,得:BD/AC=AD/AB=(√21m)/(2√7m)=(√3)/2.
设PD=3m,则PB=4m.
又BD⊥AC,则:⊿APB∽⊿DPA,得AP/DP=PB/AP,AP^2=DP*PB=12m^2.
AB=√(AP^2+PB^2)=√(12m^2+16m^2)=2√7m;
AD=√(AP^2+PD^2)=√(12m^2+9m^2)=√21m.
∵∠ABC=∠DAB=90°;
∠DAP=∠ABD(均为角BAP的余角).
∴⊿ABC∽⊿DAB,得:BD/AC=AD/AB=(√21m)/(2√7m)=(√3)/2.
追问
解:AD//BC,∠ABC=90°,则:∠BAD=90°;且PD/PB=AD/BC=3/4.
设PD=3m,则PB=4m.
又BD⊥AC,则:⊿APB∽⊿DPA,得AP/DP=PB/AP,AP^2=DP*PB=12m.
AB=√(AP^2+PB^2)=√(12m+16m)=2√7m;
AD=√(AP^2+PD^2)=√(12m+9m)=√21m.
∵∠ABC=∠DAB=90°;
∠DAP=∠ABD(均为角BAP的余角).
∴⊿ABC∽⊿DAB,得:BD/AC=AD/AB=(√21m)/(2√7m)=(√3)/2.
把答案变成以上,就给分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询