高一数学难题目

 我来答
孙曼珍应茗
2020-05-12 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:29%
帮助的人:819万
展开全部
提供你两个方法:
1.解:集合Sn的子集可以分为两类:①含有1的子集;②不含有1的子集。这两类子集各有2^(n-1)个,并且对于②中的任一子集A,必在①中存在唯一一个子集A∪{1}与之对应,且若A为奇子集,则A∪{1}为偶子集;若A为偶子集,则A∪{1}为奇子集。因此,若②中有x个奇子集,y个偶子集,则①中必有x个偶子集,y个奇子集。

所以,Sn的奇子集和偶子集的个数相同。
2.解:设A是Sn的任意一奇子集,构造映射f如下:

A→A
-
{1},若1∈A

A→A∪{1},
若1∉A
(A
-
{1}表示从集合A中去掉1后得到的集合)

所以,映射f是将奇子集映为偶子集的映射。

易知,若A1,A2是Sn的两个不同的奇子集。则f(A1)≠f(A2),即f是单射
(希望你知道什么是单射)
又对Sn的每一个偶子集B,若1∈B,则存在A=B\{1}(意思是B={x‖x∈1且x∈B),使得f(A)=B;若1∉B,则存在A=B∪{1},使得f(A)=B,从而f是满射

(知道满射吧……)

所以,f是Sn的奇子集所组成的集到Sn的偶子集所组成的集之间的一一对应,从而Sn的奇子集和偶子集的个数相等,均为1/2×2^n=2^(n-1)个

一共牵涉到集合与函数的内容,打字到手疼,希望采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式