利用定义判断函数f(x)=x+根号下(x2+1)在区间(-∞,+∞)上的单调性。 要具体过程哦!

Bianmlei0712
2011-10-03 · TA获得超过182个赞
知道答主
回答量:304
采纳率:0%
帮助的人:122万
展开全部
题目应该是:利用定义判断:f(x)=x+√(x²+1)在R上的单调性???
解:f(x)=x+√(x²+1)在R上为增函数.
给出证明如下:
设x1, x2∈R,且x1<x2,
则f(x1)-f(x2)=[ x1+√(x1²+1)]-[ x2+√(x2²+1)]
=(x1-x2)+( √(x1²+1)-√(x2²+1))
=(x1-x2)+ (x2²-x1²)/[√(x1²+1)+√(x2²+1)]
=(x1-x2)[1-(x2+x1)/[√(x1²+1)+√(x2²+1)]]
=(x1-x2)/ [√(x1²+1)+√(x2²+1)]]
∵√(x1²+1)> √(x1²)=|x1|≥x1,
∴√(x1²+1)-x1>0,同理,√(x2²+1)-x2>0,
又x1<x2,x1-x2<0
∴(x1-x2)/ [√(x1²+1)+√(x2²+1)]]<0
即f(x1)-f(x2)<0
∴f(x1)<f(x2)
∴f(x)=x+√(x²+1)在R上为增函数.

如果题目是:利用定义判断:f(x)=x²+√(x²+1)在R上的单调性.
解:f(x)=x²+√(x²+1)在(-∞,0 ]上为减函数,在(0+,∞)上为增函数.
下面给出证明:
设x1, x2∈R,且x1<x2,
则f(x1)-f(x2)=[ x1²+√(x1²+1)]-[ x2²+√(x2²+1)]
=(x1²-x2²)+( √(x1²+1)-√(x2²+1))
=(x1²-x2²)+ (x2²-x1²)/[√(x1²+1)+√(x2²+1)]
=(x1²-x2²)[1-1/[√(x1²+1)+√(x2²+1)]]
=(x1-x2)( x1+x2) /√(x1²+1)+√(x2²+1)]]
∵√(x1²+1) ≥1,√(x1²+1) ≥1,
∴√(x1²+1)+√(x2²+1)]]-1>0
又x1<x2,x1-x2<0
∴当x1<x2≤0时,x1+x2<0,
(x1-x2)( x1+x2) /√(x1²+1)+√(x2²+1)]]>0
即f(x1)-f(x2)>0,∴f(x1)>f(x2);
当0<x1<x2时,x1+x2>0,
(x1-x2)( x1+x2) /√(x1²+1)+√(x2²+1)]]<0
即f(x1)-f(x2)<0,∴f(x1)<f(x2);
∴f(x)=x²+√(x²+1)在(-∞,0 ]上为减函数,在(0+,∞)上为增函数.

好辛苦,望采纳。
乖张的孩纸
推荐于2016-12-02
知道答主
回答量:5
采纳率:0%
帮助的人:10.6万
展开全部
若 p>q,则 f(p)-f(q)=[p+√(1+p^2)]-[q+√(1+q^2)]
=(p-q)+[√(1+p^2)-√(1+q^2)]
=(p-q)+(p^2-q^2)/ [√(1+p^2)+√(1+q^2)]
=(p-q)【[√(1+p^2)+√(1+q^2)]+(p+q)】/[√(1+p^2)+√(1+q^2)]
=(p-q)【[√(1+p^2)+p]+[√(1+q^2)+q]】/[√(1+p^2)+√(1+q^2)]
>0.
所以函数函数 f(x)=x+√(1+x^2) 在(-∞,+∞)单调增加。

【注】以上证明最关键之处为:
①分子有理化 √(1+p^2)-√(1+q^2)=(p^2-q^2)/ [√(1+p^2)+√(1+q^2)];
②无论 x 取正取负,都有√(1+x^2)+x≥√(1+x^2)-|x|>|x|-|x|=0。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式