如图,已知AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别于线段CF、AF相交于点P、M
(1)求证:AB=CD(这个不用答了,自己会证)(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由...
(1)求证:AB=CD (这个不用答了,自己会证)
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由 展开
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由 展开
3个回答
展开全部
证明:∵BC⊥AF
∴∠CEA=∠AEB=∠CeD
又∵AF平分∠BAC
∴∠DAE=∠EAB
在△ACE和△ABE中,
∵∠CEA=∠AEB(已证)
AE=AE(公共边)
∠CAE=∠EAB(已证)
∴△ACe≌△ABe(ASA)
∴AB=AC则∠CAE=∠CDE
又∵∠BAC=2∠MPC
∴∠CDE=∠MPC
∵∠CDE=∠MCD+∠CMD=∠MCD+∠BMD
∠MPC=∠F+∠PMF=∠F+∠BMD
∴∠F=∠MCD
∴△ACE≌△DCE(SAS)
∴AC=DC
∴AB=CD
∴∠CEA=∠AEB=∠CeD
又∵AF平分∠BAC
∴∠DAE=∠EAB
在△ACE和△ABE中,
∵∠CEA=∠AEB(已证)
AE=AE(公共边)
∠CAE=∠EAB(已证)
∴△ACe≌△ABe(ASA)
∴AB=AC则∠CAE=∠CDE
又∵∠BAC=2∠MPC
∴∠CDE=∠MPC
∵∠CDE=∠MCD+∠CMD=∠MCD+∠BMD
∠MPC=∠F+∠PMF=∠F+∠BMD
∴∠F=∠MCD
∴△ACE≌△DCE(SAS)
∴AC=DC
∴AB=CD
追问
第二问?
追答
∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∵AC=AB,AE⊥BC,
∴CE=BE(注:证全等也可得到CE=BE),
∴AM为BC的中垂线,
∴CM=BM.(注:证全等也可得到CM=BM)
∵EM⊥BC,
∴EM平分∠CMB(等腰三角形三线合-).
∴∠CME=∠BME(注:证全等也可得到∠CME=∠BME.),
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F.(注:证三角形相似也可得到∠MCD=∠F)
展开全部
证明:∵BC⊥AF
∴∠CEA=∠AEB=∠CeD
又∵AF平分∠BAC
∴∠DAE=∠EAB
在△ACE和△ABE中,
∵∠CEA=∠AEB(已证)
AE=AE(公共边)
∠CAE=∠EAB(已证)
∴△ACe≌△ABe(ASA)
∴AB=AC
又∵点D与点A关于点E对称
∴AE=ED
∴△ACE≌△DCE(SAS)
∴AC=DC
∴AB=CD
∴∠CEA=∠AEB=∠CeD
又∵AF平分∠BAC
∴∠DAE=∠EAB
在△ACE和△ABE中,
∵∠CEA=∠AEB(已证)
AE=AE(公共边)
∠CAE=∠EAB(已证)
∴△ACe≌△ABe(ASA)
∴AB=AC
又∵点D与点A关于点E对称
∴AE=ED
∴△ACE≌△DCE(SAS)
∴AC=DC
∴AB=CD
追问
第二问?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵BC⊥AF
∴∠CEA=∠AEB=∠CeD
又∵AF平分∠BAC
∴∠DAE=∠EAB
在△ACE和△ABE中,
∵∠CEA=∠AEB(已证)
AE=AE(公共边)
∠CAE=∠EAB(已证)
∴△ACe≌△ABe(ASA)
∴AB=AC则∠CAE=∠CDE
又∵∠BAC=2∠MPC
∴∠CDE=∠MPC
∵∠CDE=∠MCD+∠CMD=∠MCD+∠BMD
∠MPC=∠F+∠PMF=∠F+∠BMD
∴∠F=∠MCD
∴△ACE≌△DCE(SAS)
∴AC=DC
∴AB=CD
回答∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∵AC=AB,AE⊥BC,
∴CE=BE(注:证全等也可得到CE=BE),
∴AM为BC的中垂线,
∴CM=BM.(注:证全等也可得到CM=BM)
∵EM⊥BC,
∴EM平分∠CMB(等腰三角形三线合-).
∴∠CME=∠BME(注:证全等也可得到∠CME=∠BME.),
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F.(注:证三角形相似也可得到∠MCD=∠F)
∴∠CEA=∠AEB=∠CeD
又∵AF平分∠BAC
∴∠DAE=∠EAB
在△ACE和△ABE中,
∵∠CEA=∠AEB(已证)
AE=AE(公共边)
∠CAE=∠EAB(已证)
∴△ACe≌△ABe(ASA)
∴AB=AC则∠CAE=∠CDE
又∵∠BAC=2∠MPC
∴∠CDE=∠MPC
∵∠CDE=∠MCD+∠CMD=∠MCD+∠BMD
∠MPC=∠F+∠PMF=∠F+∠BMD
∴∠F=∠MCD
∴△ACE≌△DCE(SAS)
∴AC=DC
∴AB=CD
回答∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∵AC=AB,AE⊥BC,
∴CE=BE(注:证全等也可得到CE=BE),
∴AM为BC的中垂线,
∴CM=BM.(注:证全等也可得到CM=BM)
∵EM⊥BC,
∴EM平分∠CMB(等腰三角形三线合-).
∴∠CME=∠BME(注:证全等也可得到∠CME=∠BME.),
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F.(注:证三角形相似也可得到∠MCD=∠F)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询