已知等差数列{an}的公差d不等于0,数列{bn}是等比数列,a1=b1=1,a2=b2,a4=b4
已知等差数列{an}的公差d不等于0,数列{bn}是等比数列,a1=b1=1,a2=b2,a4=b41,求出数列{an}与{bn}的通项公式2,设cn=an*bn,求数列...
已知等差数列{an}的公差d不等于0,数列{bn}是等比数列,a1=b1=1,a2=b2,a4=b4
1,求出数列{an}与{bn}的通项公式
2,设cn=an*bn,求数列{cn}的前n项和Sn(写成关于n的表达式)
第一问我会an=1-3(n-1),bn=1×(-2)^(n-1)
高手们直接帮忙做第二问吧
第二问我知道要用错位相减法 关键是 这个等比bn的公比是个负数 错位相减时非常麻烦 是不是要分N为奇数和偶数呢? 展开
1,求出数列{an}与{bn}的通项公式
2,设cn=an*bn,求数列{cn}的前n项和Sn(写成关于n的表达式)
第一问我会an=1-3(n-1),bn=1×(-2)^(n-1)
高手们直接帮忙做第二问吧
第二问我知道要用错位相减法 关键是 这个等比bn的公比是个负数 错位相减时非常麻烦 是不是要分N为奇数和偶数呢? 展开
2个回答
展开全部
不需要分奇偶数
cn=an*bn=(4-3n)*(-2)^(n-1)
Sn=(4-3*1)(-2)^0+(4-3*2)(-2)^1+……+[4-3(n-1)](-2)^(n-2)+(4-3n)(-2)^(n-1)
乘上公比-2
(-2)Sn=(4-3*1)(-2)^1+(4-3*2)(-2)^2+……+[4-3(n-1)](-2)^(n-1)+(4-3n)(-2)^n
用错位相减法得
3Sn=(4-3*1)(-2)^0+(-3)*[ (-2)^1+(-2)^2+……+(-2)^(n-1)]-(4-3n)(-2)^n
=1+(-3)*[ (-2)^1+(-2)^2+……+(-2)^(n-1)] -(4-3n)(-2)^n
=1+(-3)*(-2)[ 1-(-2)^(n-1) ]/[ 1-(-2) ]-(4-3n)(-2)^n
=3[ 1+(n-1)(-2)^n ]
如果因为公比是负数比较觉得复杂,你就把它待定为q,解出Sn再代入q的值就行了,
希望你看得懂!
cn=an*bn=(4-3n)*(-2)^(n-1)
Sn=(4-3*1)(-2)^0+(4-3*2)(-2)^1+……+[4-3(n-1)](-2)^(n-2)+(4-3n)(-2)^(n-1)
乘上公比-2
(-2)Sn=(4-3*1)(-2)^1+(4-3*2)(-2)^2+……+[4-3(n-1)](-2)^(n-1)+(4-3n)(-2)^n
用错位相减法得
3Sn=(4-3*1)(-2)^0+(-3)*[ (-2)^1+(-2)^2+……+(-2)^(n-1)]-(4-3n)(-2)^n
=1+(-3)*[ (-2)^1+(-2)^2+……+(-2)^(n-1)] -(4-3n)(-2)^n
=1+(-3)*(-2)[ 1-(-2)^(n-1) ]/[ 1-(-2) ]-(4-3n)(-2)^n
=3[ 1+(n-1)(-2)^n ]
如果因为公比是负数比较觉得复杂,你就把它待定为q,解出Sn再代入q的值就行了,
希望你看得懂!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询