2个回答
展开全部
只要证明方程组A'Ax=0和Ax=0同解(记A'=At)
若x是Ax=0的解,则显然x也是A'Ax=0的解
若x是A'Ax=0的解
则x'A'Ax=x'0=0
(Ax)'(Ax)=0
||Ax||=0
Ax的范数为0的当且仅当Ax=0
所以x是Ax=0的解。
矩阵中所有的数都是实数的矩阵。如果一个矩阵中含有除实数以外的数,那么这个矩阵就不是实矩阵。
扩展资料:
在线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式。
正定矩阵的行列式恒为正;实对称矩阵A正定当且仅当A与单位矩阵合同若A是正定矩阵,则A的逆矩阵也是正定矩阵;两个正定矩阵的和是正定矩阵;正实数与正定矩阵的乘积是正定矩阵。
对于具体的实对称矩阵,常用矩阵的各阶顺序主子式是否大于零来判断其正定性;对于抽象的矩阵,由给定矩阵的正定性,利用标准型,特征值及充分必要条件来证相关矩阵的正定性。
参考资料来源:百度百科——实矩阵
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询