如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点

如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DA... 如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.
请速答2、3问,初三知识解答,不要弄斜率
展开
wenxindefeng6
高赞答主

2012-03-21 · 一个有才华的人
知道大有可为答主
回答量:1.4万
采纳率:100%
帮助的人:6181万
展开全部

(1)方程x²-4x+3=0的根为1和3,又OA<OB,则:OA=1,OB=3,即点A为(-1,0),B为(3,0).

设过AB的抛物线解析式为y=a(x+1)(x-3).

∵点D为抛物线的顶点,则DA=DB;又∠DAB=45°.

∴⊿ABD为等腰直角三角形.

作DM⊥AB于M,则:DM=AB/2=2,AM=2,OM=1.即点D为(1,-2),代入y=a(x+1)(x-3).

∴-2=a(1+1)*(1-3), a=0.5.即:y=0.5(x+1)(x-3)=0.5x²-x-1.5;

(2)∵AC⊥AD;∠DAB=45°.

∴∠BAC=45°;作CH⊥X轴于H,则CH=AH.

设OH=m,则:CH=AH=m+1,即点C为(m,m+1).

∴m+1=0.5m²-m-1.5, 解得:m=5或-1.(m=-1舍去)

故点C的坐标为(5,6).

(3)设DE⊥直线L于E,CG⊥直线L于G,则:CG=d1,DE=d2.

作DF垂直CG的延长线于F,则四边形DEGF为矩形,FG=DE,即CF=CG+FG=d1+d2.

点P为线段CD上的点。

∴当直线L垂直CD于P时:点E和G均与点P重合,此时CG+DE=CP+DP=CD.

∴d1+d2的最大值=CD=√(AD²+AC²)=√[(AM²+DM²)+(AH²+CH²)=√(8+72)=4√5.

允Kevin
2012-03-20 · TA获得超过547个赞
知道答主
回答量:26
采纳率:0%
帮助的人:29.7万
展开全部
第一问可求解析式y=1/2(x+1)(x-3) 顶点坐标是(1,-2)又因为A(-1,0) 可求直线AD:y=-x-1
因为AC⊥AD,∠CAD=90,∠DAB=45° 所以∠CAB=45°所以AC:y=x+1 联立得x=5 C(5,6)

我记得初中没讲过点到直线距离吧。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式