(1)
P的速度u = 6/6 = 1 单位/s
Q的速度v = 9/6 = 3/2 单位/s
6≤ t ≤10时: P离开点O的距离p = t (p ≤10)
Q离开点O的距离q = 10时, t = 10/v = 10/(3/2) = 20/3 s
t ≤20/3时: q = 3t/2
20/3 ≤ t ≤10时: q = 10 - (t - 20/3)v = 10 - (t - 20/3)(3/2) = 20 - 3t/2
图像见图
(2)
见图, t = 8时, 两点第一次相遇
(3)
当0≤t≤10时, D(t, 0), M(t, t), P(0, t)
PQ的解析式: x + y = t
(a)
当0≤t≤ 20/3时:
QE的解析式: x + y = 3t/2
QE与PM, MP分别交于Q', E', △Q'E'M为等腰直角三角形, E'(t. t/2)
S = 正方形的面积一半 - △Q'E'M的面积
= t²/2 - (1/2)E'M²
= t²/2 - (1/2)(t - t/2)²
= 3t²/8
(b) 20/3 < t < 8时:
QE的解析式: x + y = 20 - 3t/2
x = t, y = 20 - 5t/2, E'(t, 20 - 5t/2)
S = 正方形的面积一半 - △Q'E'M的面积
= t²/2 - (1/2)E'M²
= t²/2 - (1/2)(20 - 5t/2 - t)²
= (-5/8)(9t² - 112t + 320)
(c) t ≥ 8时:
QE与PD重合或在其左下方, S = 0
2024-08-07 广告
见图, t = 8时, 两点第一次相遇
(3)
当0≤t≤10时, D(t, 0), M(t, t), P(0, t)
PQ的解析式: x + y = t
(a)
当0≤t≤ 20/3时:
QE的解析式: x + y = 3t/2
QE与PM, MP分别交于Q', E', △Q'E'M为等腰直角三角形, E'(t. t/2)
S = 正方形的面积一半 - △Q'E'M的面积
= t²/2 - (1/2)E'M²
= t²/2 - (1/2)(t - t/2)²
= 3t²/8
(b) 20/3 < t < 8时:
QE的解析式: x + y = 20 - 3t/2
x = t, y = 20 - 5t/2, E'(t, 20 - 5t/2)
S = 正方形的面积一半 - △Q'E'M的面积
= t²/2 - (1/2)E'M²
= t²/2 - (1/2)(20 - 5t/2 - t)²
= (-5/8)(9t² - 112t + 320)
(c) t ≥ 8时:
QE与PD重合或在其左下方, S = 0
2012-04-16