如图,在Rt△ABC中,已知AB=AC,∠A=90°,D为BC上任一点,DF⊥AB于点F,DE⊥AC于点E,M为BC的中点。
(1)试探究ME与MF的关系,并证明。(2)当点D在BC的延长线上时,(1)中ME与MF的关系是否仍然成立?请说明理由。...
(1)试探究ME与MF的关系,并证明。 (2)当点D在BC的延长线上时,(1)中ME与MF的关系是否仍然成立?请说明理由。
展开
展开全部
解:
△MEF是等腰直角三角形。证明如下:
连接AM
∵M是BC的中点,∠BAC=90°,AB=AC,
∴AM=1/2 BC=BM,AM平分∠BAC.
∵∠MAC=∠MAB=1/2 ∠BAC=45°.
∵AB⊥AC,DE⊥AC,DF⊥AB,
∴DE∥AB,DF∥AC.
∵∠BAC=90°,
∴四边形DFAE为矩形.
∴DF=AE.
∵DF⊥BF,∠B=45°.
∴∠BDF=∠B=45°.
∴BF=FD,∠B=∠MAE=45°,
∴AE=BF.
∵AM=BM
∴△AEM≌△BFM(SAS).
∴EM=FM,∠AME=∠BMF.
∵∠AMF+∠BMF=90°,
∴∠AME+∠AMF=∠EMF=90°,
∴△MEF是等腰直角三角形.
△MEF是等腰直角三角形。证明如下:
连接AM
∵M是BC的中点,∠BAC=90°,AB=AC,
∴AM=1/2 BC=BM,AM平分∠BAC.
∵∠MAC=∠MAB=1/2 ∠BAC=45°.
∵AB⊥AC,DE⊥AC,DF⊥AB,
∴DE∥AB,DF∥AC.
∵∠BAC=90°,
∴四边形DFAE为矩形.
∴DF=AE.
∵DF⊥BF,∠B=45°.
∴∠BDF=∠B=45°.
∴BF=FD,∠B=∠MAE=45°,
∴AE=BF.
∵AM=BM
∴△AEM≌△BFM(SAS).
∴EM=FM,∠AME=∠BMF.
∵∠AMF+∠BMF=90°,
∴∠AME+∠AMF=∠EMF=90°,
∴△MEF是等腰直角三角形.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询