若a>0,b>0,且不等式1/a+1/b+k/a+b≥0恒成立,则实数K的最小值 答案是-4,在线等,先谢谢各位同学了
2个回答
展开全部
1/a+1/b+k/(a+b)≥0恒成立
<==> k/(a+b)≥-(1/a+1/b)
<==> k≥-(a+b) *(a+b)/(ab)=-(a+b)²/(ab)
恒成立,需 k≥[-(a+b)²/(ab)]的最大值
∵a>0,b>0
∴a+b≥2√(ab) (a=b时,取等号)
两边平方
∴(a+b)²≥4ab ∴(a+b)²/(ab)≥4
∴-(a+b)²/(ab)≤-4
即-(a+b)²/(ab)的最大值为-4
∴k≥-4, ∴实数K的最小值是-4
<==> k/(a+b)≥-(1/a+1/b)
<==> k≥-(a+b) *(a+b)/(ab)=-(a+b)²/(ab)
恒成立,需 k≥[-(a+b)²/(ab)]的最大值
∵a>0,b>0
∴a+b≥2√(ab) (a=b时,取等号)
两边平方
∴(a+b)²≥4ab ∴(a+b)²/(ab)≥4
∴-(a+b)²/(ab)≤-4
即-(a+b)²/(ab)的最大值为-4
∴k≥-4, ∴实数K的最小值是-4
2012-10-29
展开全部
嗯
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询