若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1。
(1)求证:f(x)-1为奇函数;(2)f(x)在R上的增函数;(3)若f(4)=5,解不等式f(3m²-m-2)<3....
(1)求证:f(x)-1为奇函数;(2)f(x)在R上的增函数; (3)若f(4)=5,解不等式f(3m²-m-2)<3.
展开
2个回答
展开全部
(1) 令x1=x2=0,得到f(0)=1. 令x1=x,x2=-x,则f(0)=f(x)+f(-x)-1=1,即f(x)-1=-(f(-x)-1),即f(x)-1为奇函
数
(2) 令x1=x, x2=-y,x,y属于R,且x>y,即x-y>0,由f(x1+x2)=f(x1)+f(x2)-1
可知:f(x-y)=f(x)+f(-y)-1>1
由(1)知f(x)-1为奇函数,则f(-y)-1=-(f(y)-1),上式可化为:f(x-y)=f(x)+f(-y)-1=f(x)-(f(y)-1)>1,
即f(x)-f(y)>0. 所以f(x)在R上的增函数。
(3) 因为f(4)=5,令x1=x2=2,则f(4)=f(2)+f(2)-1=5,所以f(2)=3;所以f(3m²-m-2)<3=f(2), 另外,
由(2)可知f(x)在R上的增函数,所以3m²-m-2<2,解得-1<m<4/3
数
(2) 令x1=x, x2=-y,x,y属于R,且x>y,即x-y>0,由f(x1+x2)=f(x1)+f(x2)-1
可知:f(x-y)=f(x)+f(-y)-1>1
由(1)知f(x)-1为奇函数,则f(-y)-1=-(f(y)-1),上式可化为:f(x-y)=f(x)+f(-y)-1=f(x)-(f(y)-1)>1,
即f(x)-f(y)>0. 所以f(x)在R上的增函数。
(3) 因为f(4)=5,令x1=x2=2,则f(4)=f(2)+f(2)-1=5,所以f(2)=3;所以f(3m²-m-2)<3=f(2), 另外,
由(2)可知f(x)在R上的增函数,所以3m²-m-2<2,解得-1<m<4/3
展开全部
(1) 令x1=x2=0,得到f(0)=1. 令x1=x,x2=-x,则f(0)=f(x)+f(-x)-1=1,即f(x)-1=-(f(-x)-1),即f(x)-1为奇函
数
(2) 令x1=x, x2=-y,x,y属于R,且x>y,即x-y>0,由f(x1+x2)=f(x1)+f(x2)-1
可知:f(x-y)=f(x)+f(-y)-1>1
由(1)知f(x)-1为奇函数,则f(-y)-1=-(f(y)-1),上式可化为:f(x-y)=f(x)+f(-y)-1=f(x)-(f(y)-1)>1,
即f(x)-f(y)>0. 所以f(x)在R上的增函数。
(3) 因为f(4)=5,令x1=x2=2,则f(4)=f(2)+f(2)-1=5,所以f(2)=3;所以f(3m²-m-2)<3=f(2), 另外,
由(2)可知f(x)在R上的增函数,所以3m²-m-2<2,解得-1<m<4/3
数
(2) 令x1=x, x2=-y,x,y属于R,且x>y,即x-y>0,由f(x1+x2)=f(x1)+f(x2)-1
可知:f(x-y)=f(x)+f(-y)-1>1
由(1)知f(x)-1为奇函数,则f(-y)-1=-(f(y)-1),上式可化为:f(x-y)=f(x)+f(-y)-1=f(x)-(f(y)-1)>1,
即f(x)-f(y)>0. 所以f(x)在R上的增函数。
(3) 因为f(4)=5,令x1=x2=2,则f(4)=f(2)+f(2)-1=5,所以f(2)=3;所以f(3m²-m-2)<3=f(2), 另外,
由(2)可知f(x)在R上的增函数,所以3m²-m-2<2,解得-1<m<4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询