一个n阶矩阵一定有n个特征值(包括重根),且每个特征值至少有一个特征向量对吗?
不对。
一个n阶矩阵一定有n个特征值(包括重根),也可能是复根。一个n阶实对称矩阵一定有n个实特征值(包括重根)。
每一个特征值至少有一个特征向量(不止一个)。不同特征值对应特征向量线性无关。
n×n的方块矩阵A的一个特征值和对应特征向量是满足 的标量以及非零向量 。其中v为特征向量, 为特征值。
A的所有特征值的全体,叫做A的谱 ,记为 。矩阵的特征值和特征向量可以揭示线性变换的深层特性。
扩展资料:
设A是数域P上的一个n阶矩阵,λ是一个未知量,
称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。
¦(λ)=|λE-A|=λ+a1λ+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。
性质1:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。
性质2:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。
性质3:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。
不对。
一个n阶矩阵一定有n个特征值(包括重根),也可能是复根。
一个n阶实对称矩阵一定有n个实特征值(包括重根)。
每一个特征值至少有一个特征向量(不止一个)。不同特征值对应特征向量线性无关。
n×n的方块矩阵A的一个特征值和对应特征向量是满足 的标量以及非零向量 。其中v为特征向量, 为特征值。
A的所有特征值的全体,叫做A的谱 ,记为 。矩阵的特征值和特征向量可以揭示线性变换的深层特性。
扩展资料:
以A的特征值λ0代入(λE-A)X=θ,得方程组(λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。因为|λ0E-A|=0,(λ0E-A)X=θ必存在非零解 , 称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。
若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。
若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。
设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
不对。
一个n阶矩阵一定有n个特征值(包括重根),也可能是复根。
一个n阶实对称矩阵一定有n个实特征值(包括重根)。
每一个特征值至少有一个特征向量(不止一个)。不同特征值对应特征向量线性无关。
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
扩展资料
判断相似矩阵的必要条件
设有n阶矩阵A和B,若A和B相似(A∽B),则有:
1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;
2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|。
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组。
一个n阶实对称矩阵一定有n个实特征值(包括重根)。
每一个特征值至少有一个特征向量(不止一个)。不同特征值对应特征向量线性无关。