如图一,由三角形的内角和外角的性质,可知∠ABC=∠A+∠C+∠O。(1)在图二中直接利用上述结论探究:若AD、
如图一,由三角形的内角和外角的性质,可知∠ABC=∠A+∠C+∠O。(1)在图二中直接利用上述结论探究:若AD、CD分别平分∠OAC、∠OCB,且∠O=80°,∠ABC=...
如图一,由三角形的内角和外角的性质,可知∠ABC=∠A+∠C+∠O。(1)在图二中直接利用上述结论探究:若AD、CD分别平分∠OAC、∠OCB,且∠O=80°,∠ABC=120°,求∠ADC(2)猜想∠O与∠ADC之间的数量关系,并说明理由。(初一下册的课时作业本第152面的22题)
展开
5个回答
展开全部
解:①根据题意得:∠OAB+∠OCB=∠B-∠O=120°-80°=40°,
∵AD、CD分别平分∠OAB,∠OCB,
∴∠OAD+∠OCD=
∴∠ADC=∠O+∠OAD+∠OCD=80°+20°=100°;
②由题意得:∠ADC=∠OAD+∠OCD+∠O,∠ABC=∠OAB+∠OCB+∠O,
∵AD、CD是∠OAB、∠OCB的平分线,
∴∠BAD=∠OAD、∠OCD=∠BCD,
∴∠ABC=2∠ADC-∠O.点评:此题主要考查了三角形内角和定理以及角平分线的定义,由于图中涉及的角较多,理清角之间的关系是解决问题的关键
展开全部
解:①根据题意得:∠OAB+∠OCB=∠B-∠O=120°-80°=40°,
∵AD、CD分别平分∠OAB,∠OCB,
∴∠OAD+∠OCD=
∴∠ADC=∠O+∠OAD+∠OCD=80°+20°=100°;
②由题意得:∠ADC=∠OAD+∠OCD+∠O,∠ABC=∠OAB+∠OCB+∠O,
∵AD、CD是∠OAB、∠OCB的平分线,
∴∠BAD=∠OAD、∠OCD=∠BCD,
∴∠ABC=2∠ADC-∠O.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:①根据题意得:∠OAB+∠OCB=∠B-∠O=120°-80°=40°,
∵AD、CD分别平分∠OAB,∠OCB,
∴∠OAD+∠OCD=
1 |
2 |
∴∠ADC=∠O+∠OAD+∠OCD=80°+20°=100°;
②由题意得:∠ADC=∠OAD+∠OCD+∠O,∠ABC=∠OAB+∠OCB+∠O,
∵AD、CD是∠OAB、∠OCB的平分线,
∴∠BAD=∠OAD、∠OCD=∠BCD,
∴∠ABC=2∠ADC-∠O.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
若有图,即可解出该题。。。问题是么图呀?图呢 ,还有你是那个版本的教材呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询