已知函数f(x)=cos^4-2sinxcosx-sinx^4
4个回答
2012-07-23 · 知道合伙人教育行家
关注
展开全部
f(x)=(cosx)^4-2sinxcosx-(sinx)^4=[(cosx)^2+(sinx)^2][(cosx)^2-(sinx)^2]-2sinxcosx
=(cosx)^2-(sinx)^2-2sinxcosx=cos2x-sin2x
=√2*(√2/2*cos2x-√2/2*sin2x)
=√2cos(2x+π/4) 。
1)由 π+2kπ<=2x+π/4<=2π+2kπ ,得
3π/8+kπ<=x<=7π/8+kπ ,
因此函数的单调递增区间是 [3π/8+kπ ,7π/8+kπ ] ,k∈Z 。
2)由已知得 f(x)=-√3/2 ,
即 cos2x-sin2x=-√3/2 ,
两边平方得 1-sin4x=3/4,
所以,sin4x=1/4 ,
则 x=1/4*arcsin(1/4)+2kπ 或 x=π-1/4*arcsin(1/4)+2kπ ,k∈Z 。
=(cosx)^2-(sinx)^2-2sinxcosx=cos2x-sin2x
=√2*(√2/2*cos2x-√2/2*sin2x)
=√2cos(2x+π/4) 。
1)由 π+2kπ<=2x+π/4<=2π+2kπ ,得
3π/8+kπ<=x<=7π/8+kπ ,
因此函数的单调递增区间是 [3π/8+kπ ,7π/8+kπ ] ,k∈Z 。
2)由已知得 f(x)=-√3/2 ,
即 cos2x-sin2x=-√3/2 ,
两边平方得 1-sin4x=3/4,
所以,sin4x=1/4 ,
则 x=1/4*arcsin(1/4)+2kπ 或 x=π-1/4*arcsin(1/4)+2kπ ,k∈Z 。
展开全部
f(x)=(cos²x+sin²x)(cos²x-sin²x)-2sinxcosx
=1*cos2x-sin2x
=-(sin2x-cos2x)
=-√2sin(2x-π/4)
(1)2kPai+Pai/2<=2x-Pai/4<=2kPai+3Pai/2
即单调增减区间是[KP ai+3Pai/8,kPai+7Pai/8]
(2)-2根号2sin(2x-Pai/4)=-根号2.(把根号3改成根号2好做一些)
sin(2x-Pai/4)=1/2
2x-Pai/4=2kPai+Pai/6或5Pai/6
那么有X=KP ai+5Pai/24或13Pai/24
=1*cos2x-sin2x
=-(sin2x-cos2x)
=-√2sin(2x-π/4)
(1)2kPai+Pai/2<=2x-Pai/4<=2kPai+3Pai/2
即单调增减区间是[KP ai+3Pai/8,kPai+7Pai/8]
(2)-2根号2sin(2x-Pai/4)=-根号2.(把根号3改成根号2好做一些)
sin(2x-Pai/4)=1/2
2x-Pai/4=2kPai+Pai/6或5Pai/6
那么有X=KP ai+5Pai/24或13Pai/24
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=[cos^4(x)-sin^4(x)]-sin2x
=[cos^2(x)+sin^2(x)][cos^2(x)-sin^2(x)]-sin2x
=cos2x-sin2x=√2cos(2x+π/4)
(1)
单调增区间是由不等式:
-π+2kπ≤2x+π/4≤2kπ 解得:
-3π/8+kπ≤x≤π/8+kπ
即:【-3π/8+kπ,π/8+kπ 】
(2)原方程可化为:
cos(2x+π/4)=-√6/4
2x+π/4=2π±arccos(-√6/4)
=2π±(π-arccos(√6/4))
=[cos^2(x)+sin^2(x)][cos^2(x)-sin^2(x)]-sin2x
=cos2x-sin2x=√2cos(2x+π/4)
(1)
单调增区间是由不等式:
-π+2kπ≤2x+π/4≤2kπ 解得:
-3π/8+kπ≤x≤π/8+kπ
即:【-3π/8+kπ,π/8+kπ 】
(2)原方程可化为:
cos(2x+π/4)=-√6/4
2x+π/4=2π±arccos(-√6/4)
=2π±(π-arccos(√6/4))
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解由f(x)=cos^4x-2sinxcosx-sin^4x
=cos^4x-sin^4x-2sinxcosx
=(cos^2x+sin^2x)(cos^2x-sin^2x)-2sinxcosx
=1*(cos^2x-sin^2x)-2sinxcosx
=cos2x-sin2x
=√2(√2/2cos2x-√2/2sin2x)
=√2cos(2x+π/4)
即(1)f(x)的最小正周期t=2π/2=π
(2)由x∈【0,π/2】时
即0≤x≤π/2
即0≤2x≤π
即π/4≤2x+π/4≤5/4π
即当2x+π/4=π时,f(x)有最小值-√2
即x=3/8π时,f(x)有最小值-√2
即f(x)的最小值为-√2以及取得最小值时x的集合{x/x=3/8π}。
=cos^4x-sin^4x-2sinxcosx
=(cos^2x+sin^2x)(cos^2x-sin^2x)-2sinxcosx
=1*(cos^2x-sin^2x)-2sinxcosx
=cos2x-sin2x
=√2(√2/2cos2x-√2/2sin2x)
=√2cos(2x+π/4)
即(1)f(x)的最小正周期t=2π/2=π
(2)由x∈【0,π/2】时
即0≤x≤π/2
即0≤2x≤π
即π/4≤2x+π/4≤5/4π
即当2x+π/4=π时,f(x)有最小值-√2
即x=3/8π时,f(x)有最小值-√2
即f(x)的最小值为-√2以及取得最小值时x的集合{x/x=3/8π}。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询