设函数f(x)=x 2 +2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有实数根.(1)证明:-3<c≤-1,且b≥0;

设函数f(x)=x2+2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有实数根.(1)证明:-3<c≤-1,且b≥0;(2)若m是方程f(x)+1=0的一个实数... 设函数f(x)=x 2 +2bx+c,c<b<1,f(1)=0且方程f(x)+1=0有实数根.(1)证明:-3<c≤-1,且b≥0;(2)若m是方程f(x)+1=0的一个实数根,判断f(m-4)的符号,并证明你的结论. 展开
 我来答
刚港粽t
推荐于2017-09-10 · 超过70用户采纳过TA的回答
知道答主
回答量:155
采纳率:87%
帮助的人:59.9万
展开全部
(1)∵f(1)=0,∴1+2b+c=0;
∴b=-
c+1
2

又c<b<1,
故c<-
c+1
2
<1.即-3<c<-
1
3

又f(x)+1=0有实数根.
即x 2 +2bx+c+1=0有实数根.
∴△=4b 2 -4(c+1)≥0;
即(c+1) 2 -4(c+1)≥0;
∴c≥3或c≤-1;
又-3<c<-
1
3
,取交集得-3<c≤-1,
由b=-
c+1
2
知b≥0.
(2)f(x)=x 2 +2bx+c
=x 2 -(c+1)x+c
=(x-c)(x-1).
∴函数f(x)=x 2 +2bx+c的图象与x轴交于A(c,0)、B(1,0)两点;
∵f(m)=-1<0,∴c<m<1;
∴c-4<m-4<1-4<c;
∴m-4<c.
∵f(x)=x 2 +2bx+c在(-∞,c)上递减,
∴f(m-4)>f(c)=0.
∴f(m-4)的符号为正.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式