如图,已知在等边三角形ABC中,D是AC的中点,E是BC延长线上一点,且CE=CD,DM⊥BC,垂足为M,试说明BM=EM
展开全部
∵在等边△ABC,且D是AC的中点,
∴∠DBC=12∠ABC=12×60°=30°,∠ACB=60°,
∵CE=CD,
∴∠CDE=∠E,
∵∠ACB=∠CDE+∠E,
∴∠E=30°,
∴∠DBC=∠E=30°,
∴BD=ED,△BDE为等腰三角形,
又∵DM⊥BC,
∴M是BE的中点.
∴∠DBC=12∠ABC=12×60°=30°,∠ACB=60°,
∵CE=CD,
∴∠CDE=∠E,
∵∠ACB=∠CDE+∠E,
∴∠E=30°,
∴∠DBC=∠E=30°,
∴BD=ED,△BDE为等腰三角形,
又∵DM⊥BC,
∴M是BE的中点.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
∵⊿ABC是等边三角形
∴∠ABC=∠ACB=60º
∵D是AC的中点,根据三线合一,AD是∠ABC的平分线
∴∠ABD=∠DBC=30º
∵DB=DE
∴∠E=∠DBC=30º
∵∠ACB=∠CDE+∠E
∴∠CDE=30º
∴∠CDE=∠E
∴CE=CD
∵⊿ABC是等边三角形
∴∠ABC=∠ACB=60º
∵D是AC的中点,根据三线合一,AD是∠ABC的平分线
∴∠ABD=∠DBC=30º
∵DB=DE
∴∠E=∠DBC=30º
∵∠ACB=∠CDE+∠E
∴∠CDE=30º
∴∠CDE=∠E
∴CE=CD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵等边△ABC
∴∠ABC=∠ACB=60,AB=BC
∵D是AC的中点
∴∠CBD=∠ABD=∠ABC/2=30 (三线合一)
∵CE=CD
∴∠E=∠CDE
∴∠ACB=∠E+∠CDE=2∠E
∴∠E=∠ACB/2=30
∴∠CBD=∠E
∴BD=ED
∵DM⊥BC
∴BM=DM (三线合一)
∴∠ABC=∠ACB=60,AB=BC
∵D是AC的中点
∴∠CBD=∠ABD=∠ABC/2=30 (三线合一)
∵CE=CD
∴∠E=∠CDE
∴∠ACB=∠E+∠CDE=2∠E
∴∠E=∠ACB/2=30
∴∠CBD=∠E
∴BD=ED
∵DM⊥BC
∴BM=DM (三线合一)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题目没问题啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询