有三块草地,面积分别为5,6和8公顷,草地上的草一样厚,
有三块草地,面积分别为5,6,和8公顷。草地上的草一样厚,而且长得一样快。第一块草荐地可供11头牛吃10天,第二块草地可供12头牛吃14天。问第三块草地可供19头牛吃多少...
有三块草地,面积分别为5,6,和8公顷。草地上的草一样厚,而且长得一样快。第一块草荐地可供11头牛吃10天,第二块草地可供12头牛吃14天。问第三块草地可供19头牛吃多少天?第三块草地吃14天可供多少头牛?今日必须答复,明天要交了
展开
1个回答
展开全部
羊吃草问题
由题意5公顷草可供11头牛吃10天,我们可以推出30公顷草可以供66头牛吃10天。同样第二块6公顷可供12头牛吃14天,即可以认为30公顷可供60头吃14天。
我们假设1头牛1周吃一个单位的草,所以在(14-10)天内草场上的增长量是60*14-66*10=180个单位,所以1天草场的增长量为180/4=45个单位。由此我们可以计算出30公顷的草场上原来有66*10-10*45=210个单位的草。
从而有8公顷的草场上原来有210*(8/30)=56个单位的草,8公顷的草场1天草地增量为45*(8/30)=12个单位。
综上所述,在8公顷的草场上可供19头牛吃:56/(19-12)=8天
最后一问8公顷的草场1天草地增量为12单位,14天共14*12=168单位,;加上原来56单位,共224个单位,除以14天,等于16头牛
由题意5公顷草可供11头牛吃10天,我们可以推出30公顷草可以供66头牛吃10天。同样第二块6公顷可供12头牛吃14天,即可以认为30公顷可供60头吃14天。
我们假设1头牛1周吃一个单位的草,所以在(14-10)天内草场上的增长量是60*14-66*10=180个单位,所以1天草场的增长量为180/4=45个单位。由此我们可以计算出30公顷的草场上原来有66*10-10*45=210个单位的草。
从而有8公顷的草场上原来有210*(8/30)=56个单位的草,8公顷的草场1天草地增量为45*(8/30)=12个单位。
综上所述,在8公顷的草场上可供19头牛吃:56/(19-12)=8天
最后一问8公顷的草场1天草地增量为12单位,14天共14*12=168单位,;加上原来56单位,共224个单位,除以14天,等于16头牛
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询