求高手在△ABC中,AC=BC,∠ACB=90°,AD是BC边上的中线,CE⊥AD于H点,求证∠ADC=∠EDB

小雪jack
2012-11-21 · TA获得超过4.8万个赞
知道大有可为答主
回答量:1.1万
采纳率:22%
帮助的人:3659万
展开全部
作BH垂直BC交CF延长线于H
因为已知AC=BC ,∠ACB=90°
又已知CE⊥AD,推出∠CAD=DCE
所以两个直角三角形ACD和BCH全等
所以∠ADC=∠H(1),CD=BH
又已知AD是BC边上的中线
有CD=DB
所以BD=BH
因为AC=BC,推出∠CAB=∠CBA
又因为AC⊥BA,BH⊥BC,即AC平行BH,推出∠CAB=∠ABH
所以∠CBA=∠ABH
所以三角形BDF和BHF全等
所以∠BDF=∠H(2)
由(1)(2),得∠ADC=∠BDF
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式