求函数f(x)=x²-ax+a+1在区间[-1,1]上的最小值
求函数f(x)=x²-ax+a+1在区间[-1,1]上的最小值。请写出答案与解题思路,谢谢!!...
求函数f(x)=x²-ax+a+1在区间[-1,1]上的最小值。
请写出答案与解题思路,谢谢!! 展开
请写出答案与解题思路,谢谢!! 展开
3个回答
展开全部
一,最常规的做法
讨论对称轴位置,
对称轴为x=a/2
①当对称轴x=a/2<-1时,即a<-2
那么f(x)在区间[-1,1]是递裂行增函数
于是最小值就是f(-1)=(-1)²-a×(-1)+a+1=2a+2
②当对称轴x=a/2>1,即a>2
那么f(x)在区间[-1,1]是递减函数
于是肆滑哗让磨最小值就是f(1)=(1)²-a×(1)+a+1=2
③当对称轴x=a/2在区间[-1,1]上,即-2≤a≤2时
抛物线顶点,即最小点在其中
于是在对称轴上取得最小值
即最小值为
f(a/2)=(a/2)²-a×(a/2)+a+1=-a²/4+a+1
讨论对称轴位置,
对称轴为x=a/2
①当对称轴x=a/2<-1时,即a<-2
那么f(x)在区间[-1,1]是递裂行增函数
于是最小值就是f(-1)=(-1)²-a×(-1)+a+1=2a+2
②当对称轴x=a/2>1,即a>2
那么f(x)在区间[-1,1]是递减函数
于是肆滑哗让磨最小值就是f(1)=(1)²-a×(1)+a+1=2
③当对称轴x=a/2在区间[-1,1]上,即-2≤a≤2时
抛物线顶点,即最小点在其中
于是在对称轴上取得最小值
即最小值为
f(a/2)=(a/2)²-a×(a/2)+a+1=-a²/4+a+1
2012-12-01 · 知道合伙人教育行家
关注
展开全部
抛物线开口向上,对称轴为 x=a/2 。
(1)当 a/2<-1 即 a<-2 时,f(x) 在 [-1,1] 上为增函数,因此 min=f(-1)=2a+2 ;
(2)当 a/2>1 即 a>2 时,f(x) 在做姿 [-1,1] 上为减函厅胡塌数,因此 min=f(1)=2 ;扮圆
(3)当 -1<=a/2<=1 即 -2<=a<=2 时,min=f(a/2)= -a^2/4+a+1 。
(1)当 a/2<-1 即 a<-2 时,f(x) 在 [-1,1] 上为增函数,因此 min=f(-1)=2a+2 ;
(2)当 a/2>1 即 a>2 时,f(x) 在做姿 [-1,1] 上为减函厅胡塌数,因此 min=f(1)=2 ;扮圆
(3)当 -1<=a/2<=1 即 -2<=a<=2 时,min=f(a/2)= -a^2/4+a+1 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:由题意可得:函数图像的对称轴为:x=a/2,图像开口朝上,有最小值。
当a/2≤-1时枝尘,最小值为x=-1即f(x)=2a+2;
当a/2≥猜尺1时,最小值为x=1即f(x)=2;
当-1<a/2<猛兆禅1时,最小值为x=a/2即f(x)=-a²/4+a+1。
当a/2≤-1时枝尘,最小值为x=-1即f(x)=2a+2;
当a/2≥猜尺1时,最小值为x=1即f(x)=2;
当-1<a/2<猛兆禅1时,最小值为x=a/2即f(x)=-a²/4+a+1。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询