设函数f(x)={3x+4,x<0:x2-4x+6,x>=0}若互不相等的实数X1,X2,X3满足f(X1)=f(X2)=f(X3),
设函数f(x)={3x+4,x<0:x2-4x+6,x>=0}若互不相等的实数X1,X2,X3满足f(X1)=f(X2)=f(X3),则X1+X2+X3的取值范围是...
设函数f(x)={3x+4,x<0:x2-4x+6,x>=0}若互不相等的实数X1,X2,X3满足f(X1)=f(X2)=f(X3),则X1+X2+X3的取值范围是
展开
4个回答
展开全部
x<0时,f(x)=3x+4<4
x>=0时,f(x)=x2-4x+6=(x-2)^2+2>=2
若互不相等的实数X1,X2,X3满足f(X1)=f(X2)=f(X3),=m
则2<m<4(等号舍去)
3x+4=m,x1=(m-4)/3
(x-2)^2+2=m,x2=2+根号(m-2),x3=2-根号(m-2),
X1+X2+X3=8/3+m/3
则10/3<X1+X2+X3<4
x>=0时,f(x)=x2-4x+6=(x-2)^2+2>=2
若互不相等的实数X1,X2,X3满足f(X1)=f(X2)=f(X3),=m
则2<m<4(等号舍去)
3x+4=m,x1=(m-4)/3
(x-2)^2+2=m,x2=2+根号(m-2),x3=2-根号(m-2),
X1+X2+X3=8/3+m/3
则10/3<X1+X2+X3<4
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=3x+4 ,x<0
= x^2-4x+6 ,x>=0
without loss of generality,
Assume : x1< x2< x3
case 1: x1,x2,x3 <0
=> x1=x2=x3 ( rejected)
case 2: x1,x2<0 x3 >= 0
x1=x2 (rejected)
case 3: x1,<0 x2, x3 >= 0
for x<0
-无穷 <f(x1)< 4
for x>=0
f(x) = x^2-4x+6
= (x-2)^2 + 2
2<= f(x2)=f(x3) < +无穷
f(x1)=f(x2)=f(x3)
2<= f(x1)=f(x2)=f(x3) <4
2<= 3x1+4 <4 and 2<= x2^2-4x2+6<4
-2/3 <=x1 < 0 and x2^2-4x2+4 >=0 and x2^2-4x2+2 <0
-2/3 <=x1 < 0 and (x2-2)^2>0 and 2-√2< x2 < 2+√2
-2/3+ 2(2-√2)<x1+x2+x3 < 0+ 2(2+√2)
10/3- 2√2 < x1+x2+x3 < 2(2+√2)
case 4: x1,x2,x3>0 (rejected)
ie
10/3- 2√2 < x1+x2+x3 < 2(2+√2)
= x^2-4x+6 ,x>=0
without loss of generality,
Assume : x1< x2< x3
case 1: x1,x2,x3 <0
=> x1=x2=x3 ( rejected)
case 2: x1,x2<0 x3 >= 0
x1=x2 (rejected)
case 3: x1,<0 x2, x3 >= 0
for x<0
-无穷 <f(x1)< 4
for x>=0
f(x) = x^2-4x+6
= (x-2)^2 + 2
2<= f(x2)=f(x3) < +无穷
f(x1)=f(x2)=f(x3)
2<= f(x1)=f(x2)=f(x3) <4
2<= 3x1+4 <4 and 2<= x2^2-4x2+6<4
-2/3 <=x1 < 0 and x2^2-4x2+4 >=0 and x2^2-4x2+2 <0
-2/3 <=x1 < 0 and (x2-2)^2>0 and 2-√2< x2 < 2+√2
-2/3+ 2(2-√2)<x1+x2+x3 < 0+ 2(2+√2)
10/3- 2√2 < x1+x2+x3 < 2(2+√2)
case 4: x1,x2,x3>0 (rejected)
ie
10/3- 2√2 < x1+x2+x3 < 2(2+√2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
此题 考的就是画图
要使f(x1)=f(x2)=f(x3)
即使
2<f(x1)=f(x2)=f(x3)<4
假定x1<x2<x3
x2+x3=2*2=4
2<3x1+4<4
-2/3<x1<0
10/3<x1+x2+x3<4
要使f(x1)=f(x2)=f(x3)
即使
2<f(x1)=f(x2)=f(x3)<4
假定x1<x2<x3
x2+x3=2*2=4
2<3x1+4<4
-2/3<x1<0
10/3<x1+x2+x3<4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询