设n阶矩阵A的伴随矩阵为A*,证明:(提示:AA*=│A│In)
1个回答
展开全部
在百度上看到别人正好问了这个问题,答案就复制过来了,网址是http://zhidao.baidu.com/question/145016219(1)
证:
如果r(A)<n-1,A的所有n-1阶子式行列式都为0
由伴随阵的定义,A*=0
∴|A*|=0
如果r(A)=n-1
A(A*)=|A|E=0
A*的列向量为Ax=0的解,根据线性方程组理论
r(A)+r(A*)≤n
∴r(A*)≤1
∴|A*|=0
结论得证!
(2)
如果|A|=0,利用(1)的结论,|A*|=0
∴|A*|=|A|^(n-1)
如果|A|≠0,
∵A(A*)=|A|E
∴|A(A*)|=||A|E|【注意|A|是常数,计算行列式提出来就是|A|^n】
即:|A||A*|=|A|^n
∴|A*|=|A|^(n-1)
证:
如果r(A)<n-1,A的所有n-1阶子式行列式都为0
由伴随阵的定义,A*=0
∴|A*|=0
如果r(A)=n-1
A(A*)=|A|E=0
A*的列向量为Ax=0的解,根据线性方程组理论
r(A)+r(A*)≤n
∴r(A*)≤1
∴|A*|=0
结论得证!
(2)
如果|A|=0,利用(1)的结论,|A*|=0
∴|A*|=|A|^(n-1)
如果|A|≠0,
∵A(A*)=|A|E
∴|A(A*)|=||A|E|【注意|A|是常数,计算行列式提出来就是|A|^n】
即:|A||A*|=|A|^n
∴|A*|=|A|^(n-1)
参考资料: http://zhidao.baidu.com/question/145016219
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询