在图一至图三中,点B是线段AC的中点,点D是线段CE的中点,四边形BCGF和CDHN都是正方形.AE的中点是M.

如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰... 如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;
(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;
(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)
展开
千分一晓生
2013-02-06 · TA获得超过13.9万个赞
知道大有可为答主
回答量:1.4万
采纳率:93%
帮助的人:6535万
展开全部
(1)由正方形BCGF和DCGH得
∠CFG=∠CHG=45°,
∴CF=CH,∠AFCH=90°,
即FM=MH,FM⊥MH

(2)连结CM,AF,
∵CA=2BC=2CD=CE,AM=EM,
∴CM⊥AE,
∴∠AFC+∠AMC=180°,
∴点A、M、C、F共圆,
∴∠AMF=∠ACF=45°
同理∠EMH=45°,
∴∠FMH=90°
∵∠FAM=∠FAC+∠CAM=∠HEC+∠CEM=∠HEM,
AM=BM,
∴△AMF≌△BMH,
∴MF=MH,
∴△FHM是等腰直角三角形

(3)△FMH还是等腰直角三角形
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式