在△ABC中,AB=√6-√2,C=30°,则AC+BC的最大值为?
2个回答
展开全部
c=AB=√6-√2
C=30°
a/sinA=b/sinC=c/sinC
a=csinA/sinC, b=csinB/sinC
a=2csinA, b=2csin(150°-A)
S=AC+BC
=b+a
=2c(sinA+sin(150°-A) )
S' = 2c(cosA- cos(150°-A))=0
cosA = cos(150°-A)
A=75°
S''(75°)<0 ( max )
max S = S(75°)
= 4c(sin75°)
= 4(√6-√2)(sin75°)
C=30°
a/sinA=b/sinC=c/sinC
a=csinA/sinC, b=csinB/sinC
a=2csinA, b=2csin(150°-A)
S=AC+BC
=b+a
=2c(sinA+sin(150°-A) )
S' = 2c(cosA- cos(150°-A))=0
cosA = cos(150°-A)
A=75°
S''(75°)<0 ( max )
max S = S(75°)
= 4c(sin75°)
= 4(√6-√2)(sin75°)
更多追问追答
追问
S' = 2c(cosA- cos(150°-A))=0
这步是什么意思?
追答
dS/dA =2c(cosA- cos(150°-A))
find max or min, put dS/dA =0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询