已知x/(x^2-x+1)=1/3,求x^2/(x^4+x^2+1)的值
展开全部
解:因为 x/(x^2--x+1)=1/3,
所以 (x^2--x+1)/x=3,
即: x--1+1/x=3,
x+1/x=4,
两边平方得:
x^2+2+1/x^2=16,
即: x^2+1+1/x^2=15
(x^4+x^2+1)/x^2=15,
所以 x^2/(x^4+x^2+1)/x^2=1/15。
所以 (x^2--x+1)/x=3,
即: x--1+1/x=3,
x+1/x=4,
两边平方得:
x^2+2+1/x^2=16,
即: x^2+1+1/x^2=15
(x^4+x^2+1)/x^2=15,
所以 x^2/(x^4+x^2+1)/x^2=1/15。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解法一:
∵x/(x^2-x+1)=1/3,
∴3x=x^2-x+1
x^2=4x-1
x^4=16x^2-8x+1
x^2/(x^4+x^2+1)
=(4x-1)/(16x^2-8x+1+x^2+1)
=(4x-1)/(17x^2-8x+2)
=(4x-1)/(17(4x-1)-8x+2)
=(4x-1)/(68x-17)-8x+2)
=(4x-1)/(60x-15)
=1/15(4x-1)/(4x-1)
=1/15
解法二:
∵x/(x^2-x+1)=1/3,
∴3x=x^2-x+1
x+1/x=4
x^2+2+1/x^2=16
x^2+1+1/x^2=15
(x^4+x^2+1)/x^2=15,
∴ x^2/(x^4+x^2+1)=1/15。
∵x/(x^2-x+1)=1/3,
∴3x=x^2-x+1
x^2=4x-1
x^4=16x^2-8x+1
x^2/(x^4+x^2+1)
=(4x-1)/(16x^2-8x+1+x^2+1)
=(4x-1)/(17x^2-8x+2)
=(4x-1)/(17(4x-1)-8x+2)
=(4x-1)/(68x-17)-8x+2)
=(4x-1)/(60x-15)
=1/15(4x-1)/(4x-1)
=1/15
解法二:
∵x/(x^2-x+1)=1/3,
∴3x=x^2-x+1
x+1/x=4
x^2+2+1/x^2=16
x^2+1+1/x^2=15
(x^4+x^2+1)/x^2=15,
∴ x^2/(x^4+x^2+1)=1/15。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x/(x^2-x+1)=1/3,
1/(x+1/x-1)=1/3
x+1/x=4
(x+1/x)²=16
x²+1/x²=14
x^2/(x^4+x^2+1)
=1/(x²+1/x²+1)
=1/15
记住(a+1/a)²=a²+1/a²+2
1/(x+1/x-1)=1/3
x+1/x=4
(x+1/x)²=16
x²+1/x²=14
x^2/(x^4+x^2+1)
=1/(x²+1/x²+1)
=1/15
记住(a+1/a)²=a²+1/a²+2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询