已知数列an为等差数列,公差d≠0,bn为等比数列,公比为q,?

 我来答
天罗网17
2022-10-16 · TA获得超过6192个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.4万
展开全部
显然有:
an=a1+(n-1)d,
bn=b1*q^(n-1),
又a3=b3,a7=b5,
所以:
a1+2d=a1*q^2,①
a1+6d=a1*q^4,②
由上面2个式子,得到:
3①-②:2a1=a1*(3q^2-q^4)
因为a1不等于0(因为a1=b1,而b1不等于0)
所以:
2=3q^2-q^4
即q^4-3q^2+2=0
这是一个关于q^2的一元二次方程.
解出这个方程,即可得到q=正负1,
或者是正负√2.
若 q=正负1,则有d=0,矛盾!
故:q=正负√2.
带入已知式子可以得到:
a1=2d.
由an=bm知道:
a1+(n-1)d=a1*q^(m-1),
即:
(n+1)d=2d*q^(m-1),
由d不等于0可知:
n+1=2*q^(m-1),其中q为已知.
这就是n,m的关系.,3,已知数列an为等差数列,公差d≠0,bn为等比数列,公比为q,
若a1=b1,a3=b3,a7=b5,且an=bm,求m与n的关系式
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式